domingo, 17 de marzo de 2019

¿Qué es la teoría cuántica? - Gerardo Ortiz

¿Qué es la teoría cuántica?
(Por Gerardo Ortiz)




La teoría cuántica fue inicialmente concebida como un intento de explicar el espectro de energía de un cuerpo negro, un objeto físico idealizado que absorbe toda la radiación incidente antes de volver a emitirla. Según la física clásica, a una temperatura fija, la energía emitida debería aumentar, sin límite, con la frecuencia de la onda radiante emitida. Sin embargo, los experimentos contradecían esta predicción clásica. Fue Max Planck quien resolvió la paradoja introduciendo el concepto de quanta en 1900. Esencialmente, Planck postuló que la radiación solo podía ser emitida en unidades discretas, o quanta, de energía. Esta suposición aparentemente simple pero radical implicaba que los modos de frecuencia más alta eran menos probables de ser excitados por lo que su energía promedio disminuiría con la frecuencia. Más tarde se observó que las líneas espectrales discretas de los átomos, que representan las transiciones entre los niveles estables de energía atómica, no podían explicarse por la teoría clásica del electromagnetismo, ya que los electrones (partículas cargadas negativamente que componen el átomo) caerían en espiral hacia el núcleo, haciendo que el átomo y, por lo tanto, toda la materia se volviese inestable. Fue Niels Bohr quien resolvió este rompecabezas en 1913 extendiendo las ideas iniciales de Planck sobre la cuantización a otras magnitudes dinámicas como el momento angular, la propiedad que caracteriza la inercia rotatoria de un objeto físico, obligando así a los electrones a moverse en órbitas particulares bien definidas.

Aunque estas ideas iniciales eran fundamentales, cada vez estaba más claro que algo profundo ocurría en el micro-mundo y aún no se había descubierto. Fue entonces el momento de dos científicos notables, Werner Heisenberg (1925) y Erwin Schrödinger (1926), que independientemente introdujeron formulaciones equivalentes de una nueva mecánica de ondas, más tarde conocida como teoría cuántica no relativista. Un aspecto revolucionario clave de esta nueva mecánica de ondas era que las condiciones externas al sistema y un aparato de medición podían determinar si un sistema físico se comporta como una partícula o una onda. Para capturar esta dualidad llamada onda-partícula, el sistema no podía ser simplemente especificado por su posición y velocidad, sino por un objeto matemático llamado función de onda, un catálogo de potencialidades. El carácter de onda de esta función de estado conduce naturalmente al fenómeno de la interferencia, algo observado normalmente en ondas ordinarias que se manifiestan en la luz o el agua.

Sin embargo, en la mecánica cuántica este fenómeno se manifiesta espectacularmente como resultado de la medición de un conjunto de partículas cuánticas igualmente preparadas que inciden, por ejemplo, en una pantalla con doble rendija. Lo que es más importante, esta manera particular de caracterizar el estado de un sistema implicaba una descripción probabilística de la naturaleza, una salida dramática de los sueños de Pierre-Simon Laplace (1814) de una descripción completamente determinista de nuestra realidad externa. En consecuencia, la medición simultánea de dos propiedades complementarias del sistema, como la posición y el momento de un electrón, está sujeta a imprecisión; cuanto más precisamente tratamos de medir una de esas propiedades, menos precisa es la otra, algo conocido popularmente como el principio de incertidumbre.

En 1935, Albert Einstein, Boris Podolsky y Nathan Rosen sugirieron un experimento mental con consecuencias asombrosas. Se dieron cuenta de que un estado de un sistema cuántico compuesto no está necesariamente determinado por los estados de sus subsistemas constituyentes. Esta es una característica clave de los fenómenos cuánticos que más tarde Schrödinger denominó entrelazamiento, un recurso único que proporciona correlaciones no locales entre subsistemas que no admiten ninguna interpretación clásica local. Es esta no localidad lo que es difícil de comprender (y de hecho estaba en el centro de una serie de controversias que Einstein expresó con la teoría cuántica), pero en las últimas décadas los avances en la óptica moderna han hecho posible producir rutinariamente estados entrelazados de fotones (partículas de luz) usando láseres y las propiedades ópticas no lineales de ciertos cristales. Utilizando estas técnicas, muchos investigadores han podido confirmar las predicciones de la mecánica cuántica (y refutar teorías alternativas que involucran "variables ocultas" las cuales expresan la aleatoriedad cuántica en términos de elementos desconocidos de la aparente realidad externa).

El formalismo de la mecánica cuántica se ha extendido durante los últimos 80 años para acomodar la relatividad especial y la teoría de campos, y la comprensión de sus detalles ha sido esencial para el desarrollo de gran parte de la tecnología moderna (desde la comprensión mecanicista de la química sintética y física nuclear hasta las bases de los semiconductores y las industrias de almacenamiento magnético, por citar solo algunos ejemplos).

La teoría cuántica rechaza la visión clásica de la realidad física. Define un marco teórico fundamental que representa nuestra mejor descripción posible del mundo externo conocido, y junto con la teoría de la relatividad, forma la base de la física moderna. Se aplica a la descripción de los fenómenos naturales en todas las escalas, desde el micro hasta el macro-mundo, incluyendo los problemas fundamentales de la cosmología. A pesar de todos sus éxitos hay un aspecto en el formalismo que es difícil de tragar; en cierto sentido, los sistemas no poseen propiedades definidas (objetivas) hasta que medimos dichas propiedades, y la medida real siempre encuentra el sistema en un estado definido, no en la superposición de estados que conforman la función de onda real.

Uno solo puede predecir la probabilidad de un determinado resultado de una medición, pero no puede predecir el "colapso" real a un estado definido. Esto se conoce como la paradoja de la medición cuántica. Los dos principios más fundamentales que diferencian el realismo cuántico del realismo clásico son la no localidad genérica de las correlaciones cuánticas, o el entrelazamiento, y el hecho más general de que la mecánica cuántica es intrínsecamente contextual, lo que significa que el resultado de la medición de cualquier propiedad de un sistema depende de la configuración experimental específica que se utiliza para medir esa propiedad. En otras palabras, el resultado de una medición no debe considerarse como información revelada que simplemente está escondida de nosotros, es decir, preexistente e independiente del contexto de esta medición.

El entrelazamiento es ciertamente la propiedad que se encuentra en el corazón de la riqueza y rareza del mundo de la mecánica cuántica. Ahora nos damos cuenta de que estas correlaciones no locales están detrás de algunos de los problemas más desconcertantes de la física de los materiales, y también han llevado a revoluciones en la computación, comunicación (por ejemplo, permitir protocolos cuánticos de teletransporte), criptografía y otros campos. Recientemente, la promesa del entrelazamiento para abrir inusitados horizontes técnicos tanto como nuestra capacidad de controlar y comprender este aspecto singular del universo cuántico se ha descrito como la segunda revolución cuántica. Los llamados ordenadores cuánticos prometen proporcionar una aceleración exponencial en la resolución de ciertos problemas que fundamentalmente están más allá de las capacidades de los ordenadores convencionales, y se cree que el entrelazamiento es un ingrediente esencial para comprender y desbloquear el poder de la computación cuántica.

Se agradece a D. Felipe José Ramos Calderón, piloto de aviación, estudiante de Física (UNED) y buen amigo, por la traducción precisa de este capítulo.


Gerardo Ortiz
Doctor en Física
Professor of Condensed Matter Physics, Indiana University






An american, argentine born of spanish descent, physicist. After receiving his Ph.D. in Theoretical Physics at the Swiss Federal Institute of Technology, Gerardo Ortiz continued his career in the United States, first, as a postdoctoral fellow at the University of Illinois at Urbana-Champaign, and then as an Oppenheimer fellow at the Los Alamos National Laboratory where he stayed as a permanent staff member until 2006. 

He is currently Professor of Physics at Indiana University, Bloomington. 


His scientific career has spanned a large variety of topics in condensed matter physics and quantum information science, including electron fluids and solids, strongly correlated systems, quantum Hall physics, high-temperature superconductivity, quantum critical phenomena, and topological quantum matter, among others.


No hay comentarios:

Publicar un comentario