domingo, 10 de marzo de 2019

Redshift - Paola Marziani

El efecto Doppler o “corrimiento hacia el rojo” (redshift) de una onda electromagnética, ¿es posible saber si se debe a la velocidad del objeto o a la acción de un campo gravitatorio? ¿Y qué es el redshift cosmológico?
(Por Paola Marziani)



El efecto Doppler es un fenómeno físico muy básico que ocurre cuando un objeto que emite ondas, como por ejemplo la luz (ondas electromagnéticas) o el sonido (ondas acústicas), está en movimiento con respecto a un receptor (observador u oyente en el caso de la luz o sonido). Cuando las fuentes de emisión se están alejando del observador, las ondas sucesivas se emiten desde una posición más lejana al observador. Por lo tanto, el observador recibe cada onda después de un tiempo más largo respecto al que recibiría en el caso en que la fuente estuviera en reposo; por este motivo, la distancia temporal entre las crestas de la onda se incrementa y la frecuencia se reduce. Lo contrario sucede cuando la fuente de ondas se aproxima al observador. Por consiguiente, el efecto Doppler puede dar lugar a un cambio de longitud de onda que puede ser positivo si la fuente se está alejando, pero también negativo si se está acercando.

El efecto Doppler clásico relaciona la velocidad de la fuente con la velocidad de propagación de la señal, es decir, v / c, donde c es la velocidad de la luz o la velocidad del sonido en el medio en el que la señal se propaga (que podría ser por ejemplo el vacío o aire para la luz y el aire o el agua para el sonido). El corrimiento de longitud de onda es simplemente proporcional a la relación Δλ/ λ0 = (λ-λ0)/λ0 = v / c, donde λ0 es la longitud de onda de la luz emitida por una fuente en reposo y puede tomar un signo negativo o positivo si la fuente se acerca o se aleja.

Una fuente que se aleja dará siempre un aumento de la longitud de onda. Con referencia a la longitud de onda de la luz visible, se dice a menudo un corrimiento al rojo, es decir, un desplazamiento hacia el rojo. Este término, en astronomía se utiliza para cada frecuencia, incluso el dominio de rayos X y de radio para indicar un aumento de la longitud de onda.

La fórmula anterior es una de las más importantes en todo el campo de la física. Las cosas empiezan a ser menos sencillas si tenemos en cuenta a una fuente que se está moviendo a una fracción no despreciable de la velocidad de la luz. En este caso habrá un término adicional que siempre va a dar un corrimiento al rojo, independiente de la dirección del movimiento. Este término es un efecto puro de la relatividad especial, en relación con la incapacidad de sincronizar nuestros relojes con el de la fuente de movimiento y puede ser arbitrariamente grande cuando la velocidad de la fuente se acerque a la velocidad de la luz.

El corrimiento al rojo gravitacional tiene un origen independiente al efecto Doppler. No solo que siempre se corre al rojo, sino también necesita un campo gravitacional muy fuerte para ser detectado en fuentes astrofísicas.

Es interesante tener en cuenta que, tan pronto como se descubrieron a los quásares, algunos astrónomos pensaban que el corrimiento al rojo no podía ser debido a “la velocidad de recesión de las galaxias” (es decir, a la distancia en una formulación obsoleta y incorrecta), sino que tenía que ser de origen gravitacional. Esta idea fue rápidamente abandonada debido a paradojas que plantean la necesidad de estar muy cerca de una masa por obtener el gran corrimiento al rojo de los quásares.

El pequeño tamaño de la fuente ponía un límite muy fuerte a la cantidad de radiación que podría producirse. Y de hecho es necesario estar muy cerca por tener un corrimiento al rojo no despreciable debido a que el desplazamiento al rojo gravitacional es proporcional al cociente entre la masa y la distancia de un objeto (no es que la masa tiene que ser grande, sino es un asunto del cociente masa-distancia).

El corrimiento al rojo gravitacional puede aumentar indefinidamente en una fuente que se acerca de un objeto masivo. En un contexto astrofísico, los casos más extremos son los agujeros negros y las estrellas de neutrones. En el caso de un agujero negro, una fuente vista por un observador distante nunca alcanzará el horizonte de eventos del agujero negro, pero el observador verá la luz emitida desplazada a una longitud de onda más larga.

Si originalmente la fuente estaba emitiendo luz visible, y si fuera posible seguir la luz desde la fuente hacia su caída al agujero negro en todas las frecuencias, el receptor detectará las ondas en el óptico y luego en el IR cercano, a continuación, en el IR lejano, en el sub-mm, y luego a más y mayores longitudes de onda en el dominio del radio. La luz emitida en las proximidades de un agujero negro aparecerá desplazada hacia el rojo debido a la pérdida de energía para superar el profundo potencial gravitacional del agujero negro.

El campo gravitacional puede crear un corrimiento al rojo arbitrariamente grande. ¿Qué pasa con el corrimiento al rojo de las fuentes astronómicas a gran distancia, como las galaxias y quásares? Como se ha mencionado, muchos años atrás la gente hablaba de velocidad de recesión de las galaxias. Edwin Hubble en el 1925 encontró una relación directa entre el corrimiento al rojo y la distancia de las mismas galaxias, es decir v = c z = H0 d, donde H0 es la constante de Hubble estimada alrededor de 70 km / s / Mpc.

Actualmente, esta ley sigue siendo válida y es utilizada   por   los astrónomos si z << 1. Sin embargo, hoy en día existen cientos de miles de galaxias y quásares conocidos con z >> 1, incluso hasta z = 7. Puesto que somos capaces de medir la velocidad solo a lo largo de nuestra línea de visión (la velocidad radial) para los objetos distantes, el corrimiento al rojo no se puede asociar a una velocidad física a menos que se cumplan condiciones poco realistas y muy especiales.

El corrimiento al rojo de galaxias y quásares se explica en el contexto de un Universo en expansión, al que se llama propiamente expansión cosmológica del Universo, donde el tejido del espacio se está expandiendo después de un estado denso y caliente que en su origen fue una singularidad (no se trata de una expansión en un volumen previamente existente, es el mismo espacio-tiempo que se expande).

El desplazamiento hacia el rojo vuelve a ser no solo un marcador de la distancia, sino también un indicador de la época cósmica. Y hay una diferencia física fundamental con un desplazamiento al rojo debido al efecto Doppler: las fuentes no se mueven una con respecto a la otra, sino están retrocediendo solo porque el espacio-tiempo se está expandiendo. Nuestras reglas son más grandes en espesor y los relojes están corriendo más lentamente con respecto a los de las fuentes distantes. A una distancia definida por un corrimiento al rojo z, los relojes estarían corriendo más rápido por un factor (1 + z).


Se agradece la ayuda de las doctoras Alenka Negrete y Alba Grieco por una revisión precisa de este capítulo.

Paola Marziani
Doctora en Astrofísica
Investigadora / INAF - Osservatorio Astronomico di Padova








Nació en Bolzano/Bozen, en Alto Adige/Südtirol. Obtuvo su laurea en Astronomía en 1986 y su Ph. D. en astrofísica en 1991.

Después de estancias de investigación en los Estados Unidos, México e Italia, se quedó en 1995 en el Instituto Nacional de Astrofísica en Padova. Su intereses astronómicos principales son los cuasares y las galaxias, la cosmología observacional, y los procesos atómicos que dan origen a lineas de emisión.

Desde 1988 ha publicado más de doscientas contribuciones de astrofisica (los mayoría de astrofisica extragaláctica), y artículos de divulgación astronómica en Inglés, Italiano y Español.

Recomendaciones en este Blog.

No hay comentarios:

Publicar un comentario