lunes, 15 de octubre de 2018

¿Qué es el Viento Solar? - Antonio Guerrero Ortega

¿Qué es el Viento Solar?
(Por Antonio Guerrero Ortega)



El sistema solar, en el que orbitan los planetas más cercanos, está definido por un entorno dominado por el viento solar. En el inmenso espacio de la Vía Láctea (nuestra galaxia), compuesta de millones de estrellas, el sistema solar sostenido por la presencia del viento solar que emana de la atmósfera del Sol es como una pequeña burbuja que envuelve a nuestra estrella en su viaje por la galaxia. Esta burbuja dominada por el viento solar es lo que llamamos Heliosfera.

La primera sospecha de que existía una especie de viento que soplaba desde el Sol en todas direcciones existe desde que se observan los cometas. Los cometas son objetos que viajan, en parte o totalmente, por el entorno de la Heliosfera (medio interplanetario) y que la humanidad ha podido observar fácilmente desde la Tierra desde mucho antes de la era espacial. La característica más llamativa de ellos es lo que comúnmente llamamos la cola del cometa, el rastro que parecen dejar en su viaje espacial debido a que están compuestos de materia que se desprende cuando se acercan al Sol. Lo que hizo pensar por muchas generaciones que tenía que existir un viento que sople alejándose del Sol en todas direcciones era el hecho de que la cola de los cometas se aleja siempre del Sol en la dirección radial, independientemente de si el cometa se dirige hacia el Sol o se aleja del mismo. Lo lógico sería pensar que la cola del cometa son partículas que se quedan detrás en su viaje por el medio interplanetario, pero no es así, pues cuando el cometa se aleja del Sol, la cola se sitúa en la parte de delante, dando a entender que existía una fuerza con origen en el Sol que las hacía desprenderse en esa dirección. Una de las preguntas frecuentes que se hacían era si ese viento podría ser debido a la presión de la luz solar (la misma que ilumina la Tierra) o si se necesitaría algún otro tipo de partículas para provocar ese efecto de arrastre de las partículas de la cola del cometa. Además, algunos cometas muestran una doble cola, una cola blanca brillante en la dirección radial y otra cola de otro color, de luz más débil y dirigida en una dirección distinta. Como veremos más adelante, muchos de los efectos observados en la época anterior a la era espacial, solo pueden ser explicados por la presencia de las partículas con masa en un estado de plasma. Por ejemplo, la conservación de la estructura de campo magnético solar a distancias muy lejanas de su superficie hace posible la captura de partículas ionizadas de la cola de algunos cometas, dirigiéndolas en la dirección de las líneas de campo y emitiendo luz con el color característico de dichos iones.


1        Radiación solar.

El Sol emite dos tipos muy diferentes de radiación, una con masa y otra sin masa. La radiación sin masa es luz (una onda electromagnética), la cual ilumina y calienta la Tierra; la radiación con masa son partículas que escapan de la atmósfera solar. La luz tarda en realizar la distancia Sol-Tierra unos ocho minutos debido a que viaja a la máxima velocidad posible en el universo (la velocidad de la luz) gracias a que no posee masa y a que viaja en un medio que no interfiere en su propagación (cuasi-vacío). El otro tipo de radiación corpuscular (partículas con masa) es precisamente la que provoca que el espacio Sol-Tierra no sea un vacío absoluto.


2        El estado de plasma.

Para ser capaces de entender la estructura del viento solar y su comportamiento hay que saber que prácticamente todo lo que existe fuera de nuestro planeta está en estado de plasma. El plasma es un estado más como lo son el estado sólido, el estado líquido o el estado gaseoso. En ese orden, el plasma estaría a continuación del estado gaseoso. El orden lo marca el grado energético que poseen las partículas que componen la materia. En el estado sólido, las partículas poseen poca energía, y por tanto las velocidades a las que se mueven unas partículas respecto de las otras es prácticamente nulo. En el estado líquido, las partículas poseen mayor energía y es posible que existan movimientos relativos entre las mismas. En el estado gaseoso, las partículas se mueven a gran velocidad en cualquier dirección. El cuarto estado es el plasma, en el que las partículas poseen tanta energía, que éstas son capaces de separarse en partes más pequeñas. Las partículas más pequeñas que constituyen la materia es lo que se conoce como átomos, aunque sabemos que podemos separar los átomos en sus constituyentes más pequeños, por ejemplo, en protones y electrones. La diferencia estriba en que estos constituyentes poseen la propiedad de carga eléctrica, positiva para los protones y negativa para los electrones y por tanto para separarlos es necesario superar la fuerza electromagnética que los mantiene unidos a esas distancias tan cortas. En el estado de plasma, las partículas poseen tanta energía que sus electrones superan esas fuerzas, quedando en un estado libre, sin pertenecer a un átomo en concreto y en consecuencia creando campos electromagnéticos en el entorno externo. En esta descripción del estado de la materia se tienen en cuenta los movimientos internos relativos de las partículas y no los movimientos por otras fuerzas externas que puedan tener el conjunto de partículas. Así la Tierra puede estar moviendo continuamente a velocidad constante materia en estado sólido, líquido, gaseoso e incluso de plasma.


3        ¿Es posible que el Sol emita partículas constantemente?

La gravedad del Sol es mucho mayor que la existente en la Tierra, por tanto debería de ser suficiente para retener todas las partículas de su atmósfera e impedir que se expulse un viento continuo hacia el exterior. Pero no es así, la capa externa de la atmósfera solar (la corona) se acelera en la dirección radial de forma que emite un flujo continuo de partículas hasta los límites del sistema solar. Las causas de por qué sucede de esta forma no es sencilla de entender sin recurrir a ecuaciones de estado y conservación de momento. Lo primero que hay que entender es que la situación se encuentra en estado de equilibrio, dado por las condiciones de contorno, que son las que existen en el origen y el destino del viento solar, es decir, en la corona y en el exterior del sistema solar. El hecho de existir el viento solar como flujo constante de partículas, no quiere decir que no exista equilibrio, simplemente nos dice que el equilibrio no es estático. La clave que hace que la atmósfera solar se escape de su propio dominio se encuentra precisamente en dichas condiciones de contorno; en la temperatura de la corona, de alrededor de un millón de grados Kelvin, muy superiores a la temperatura de la atmósfera terrestre, y además en la baja presión, densidad y temperatura existente en el exterior del sistema solar (en el medio interestelar).


4        Eyecciones de masa coronal y viento solar rápido.

La corona solar, donde se origina el viento solar, se parece muy poco al exterior de nuestro planeta, sobre todo debido a que en su interior tampoco ocurren los mismos fenómenos. El Sol posee una rotación sobre si mismo como la Tierra, pero su superficie no rota como si fuera un sólido, sino como plasma. Su ecuador gira más rápido que los polos y esta circunstancia provoca que el plasma constituya estructuras complejas en las que se producen bucles y regiones con mayor actividad que otras. Esas regiones activas, se ven como zonas brillantes y contienen campos magnéticos muy intensos que mantienen al plasma encerrado en su interior y que impiden que estos sean fuente de viento solar. El estado de estas regiones es en determinadas ocasiones inestable de manera que es posible la reconfiguración explosiva de los campos magnéticos y la consecuente expulsión de plasma hacia el exterior. Estas expulsiones que ocurren de manera esporádica (por tanto no son las responsables de la formación de viento solar) es lo que conocemos como eyecciones de masa coronal. En la superficie del Sol también podemos observar en determinadas ocasiones otras zonas que en este caso son oscuras, normalmente de mayor tamaño que las regiones activas, llamadas agujeros coronales. Estas zonas al contrario que las anteriores, poseen campo magnético abierto, de manera que permiten al plasma de la corona escapar libremente hacia el exterior y por tanto sí que generan viento solar, pero en este caso viento solar rápido que interacciona con el ya existente.


5        Campo magnético interplanetario.

Todas estas estructuras de campo magnético tan diferentes en la superficie del Sol giran conjuntamente con la rotación solar. Aunque las partículas de viento solar son expulsadas en dirección radial, las propiedades del campo magnético de cada zona se conservan en su propagación debido a que en este tipo de plasma el campo magnético queda congelado. Esto se debe a que la energía que poseen las partículas es mayor que la que posee el campo magnético. La rotación solar produce por tanto un patrón de campo magnético en el medio interplanetario que visto desde los polos del eje de rotación forma una espiral. Dicho patrón demuestra la conservación de las estructuras magnéticas de la superficie solar a lo largo de su propagación radial y por tanto permiten que desde la Tierra podamos predecir y medir muchas de estas propiedades antes de que la alcancen.


6        Falda de bailarina.

El Sol, además, posee una gran estructura de campo magnético, con líneas de campo salientes en un hemisferio y entrantes en el otro. El límite entre una zona magnética y la otra puede entenderse como una línea en la zona del ecuador solar más o menos ondulada dependiendo del momento del ciclo solar. Este ciclo de actividad solar dura once años y en cada ciclo la polaridad positiva (hacia afuera) o negativa (hacia adentro) se alternan. Como se ha comentado anteriormente, toda la gran estructura magnética del Sol se conserva en su propagación, y esto hace que la línea más o menos ondulada que separa los dos hemisferios magnéticos en el Sol aparezca en el  medio interplanetario como una lámina con forma de falda de bailarina, que divide las zonas de campos magnéticos dirigidos hacia el Sol de los dirigidos hacia el exterior del sistema solar. Dicha lámina es una zona neutra magnéticamente que produce interesantes fenómenos.


7        La investigación en meteorología espacial.

El viento solar juega un papel muy importante en la relación Sol-Tierra, pues nos conecta de una manera mucho más cercana a nuestra estrella más cercana, permitiéndonos “tocar” prácticamente su atmósfera con instrumentos a bordo de naves que necesitan alejarse de la Tierra una distancia relativamente pequeña respecto de la distancia al Sol. Además, en este flujo continuo de partículas se propagan y suceden multitud de sucesos que aún no conocemos en detalle. Diferentes tipos de estructuras de plasma se establecen e interaccionan en este entorno, y en muchos casos alcanzan nuestro entorno terrestre causando importantes daños en nuestra vida cotidiana. Actualmente la disciplina que estudia el estado del Sol y su relación con el medio interplanetario y los entornos planetarios, para monitorizar y predecir como son afectados se denomina Meteorología Espacial. Son muchas las preguntas abiertas en este campo de investigación, por ejemplo, aún no se conoce con exactitud el origen del viento solar más lento, la Heliosfera es una gran desconocida en los planos que escapan de la eclíptica, en el que orbitan los planetas. Nuevas misiones espaciales son necesarias para aportar los datos necesarios en esas zonas, así como en zonas cercanas al Sol, para ser capaces de desvelar incógnitas como la forma en que las diferentes estructuras de plasma interaccionan aumentando su daño efectivo en los planetas.


Antonio Guerrero Ortega
Doctor en Investigación Espacial
Profesor Dr. de la Universidad de Alcalá





No hay comentarios:

Publicar un comentario