jueves, 28 de septiembre de 2023

¿Qué es el hidrógeno metálico? - Carlos M. Pina

¿Qué es el hidrógeno metálico? ¿Cómo puede ser el hidrógeno un metal?
(Por Carlos M. Pina)



(Noviembre 2016)


La mayoría de los elementos químicos de la tabla periódica se clasifican como metales. Los metales poseen una serie de propiedades comunes, entre las cuales destacan su brillo característico, su alta conductividad eléctrica y térmica, su maleabilidad y su ductilidad. Todas estas propiedades se pueden explicar teniendo en cuenta el tipo de enlace que une a sus átomos. En los metales, los núcleos atómicos se encuentran muy próximos unos a otros, rellenando el espacio de la forma más eficiente posible y permaneciendo unidos entre sí gracias a una nube o gas de electrones que los envuelven. Los electrones de esa nube, además de reflejar la luz y proporcionar a los metales su especial brillo, tienen una gran libertad de movimiento, lo que explica que la electricidad y el calor se transmitan fácilmente a través de ellos. Además, la relativa debilidad de los enlaces que forman los metales permite que sus átomos puedan deslizarse unos respecto a otros. Ello tiene como consecuencia que se puedan deformar y estirar con facilidad. Un caso extremo de deslizamiento de átomos en un metal lo encontramos en el mercurio, que a temperatura ambiente no presenta una estructura cristalina como la mayoría de los metales sino que es líquido.

Como bien nos dice Isaac Asimov en su libro “Cien preguntas básicas sobre la Ciencia”, para que se produzca el enlace metálico y existan electrones móviles es necesario que entre el núcleo atómico y los electrones más externos que se encuentran a su alrededor haya un número de capas electrónicas que apantallen la atracción electrostática que ejercen los núcleos (con carga positiva) sobre los electrones (con carga negativa). Estas capas son más numerosas en los elementos químicos con un alto número atómico y que, por lo tanto, poseen un gran número de electrones. Este es el caso, por ejemplo, del potasio, el hierro o el oro. A diferencia de estos átomos, el átomo de hidrógeno solo tiene un protón y un electrón, que suele compartir con el electrón de otro átomo de hidrógeno para formar la molécula gaseosa H2. Al no haber apantallamiento posible, pues no existen capas electrónicas inferiores, los electrones compartidos están fuertemente ligados a sus núcleos en la molécula de H2 y, en consecuencia, el hidrógeno no tiene propiedades metálicas en condiciones ambientales. Sin embargo, se ha especulado mucho sobre la posibilidad de que el hidrógeno se convierta en un metal bajo condiciones de elevada presión y temperatura.

En 1935, los físicos Eugene Wigner y Hillard Bell Huntington predijeron que para que el hidrógeno se transforme en un metal serían necesarias elevadísimas presiones [1]. Se estima que una presión superior a la que existe en el núcleo terrestre (unos 3,5 millones de atmósferas) podría obligar a los protones del hidrógeno a empaquetarse de forma compacta. Solo entonces los electrones quedarían libres y se obtendría hidrógeno metálico líquido, algo parecido al mercurio. No obstante, el hidrógeno metálico sería un compuesto bastante diferente de los metales que conocemos y se presentaría como un estado de la materia degenerado con propiedades singulares. Así, se piensa que el hidrógeno metálico podría ser superconductor a temperatura ambiente y comportarse también como un superfluido. Por otro lado, algunos científicos creen que el hidrógeno metálico podría permanecer de forma metaestable durante cierto tiempo, es decir sin transformarse inmediatamente en hidrógeno ordinario una vez eliminada la presión necesaria para formarlo. Si esto fuera así, el hidrógeno metálico líquido podría emplearse como un combustible limpio (pues su combustión solo produciría agua) y con una eficacia energética casi cinco veces superior a los combustibles H2/O2 empleados actualmente. El empleo de este nuevo combustible permitiría, entre otras cosas, aumentar la potencia de las naves espaciales y, por tanto, acortar considerablemente la duración de los viajes  a otros planetas. Este potencial uso del hidrógeno metálico como combustible, junto con sus propiedades electrónicas y sus posibles aplicaciones tecnológicas derivadas, han hecho de su obtención una importante meta científica.

A pesar del gran interés que existe por el hidrógeno metálico y del gran número de experimentos realizados para obtenerlo, los resultados han sido hasta la fecha limitados. En 1996, un grupo de científicos del Lawrence Livermore National Laboratory (EE.UU.) comunicó que había conseguido casualmente detectar durante un milisegundo la formación de hidrógeno metálico durante un experimento en el que sometieron hidrógeno molecular líquido a temperaturas de varios miles de grados y presiones de algo más de un millón de atmósferas [2]. Este resultado fue en cierto modo sorprendente, pues experimentos previos realizados por otros investigadores empleando hidrógeno molecular sólido y presiones de hasta 2,5 millones de atmósferas no habían dado lugar a la formación de hidrógeno metálico.

Desde entonces, los intentos para obtener hidrógeno metálico han continuado en laboratorios de todo el mundo. En 2011, científicos del Max Planck Institut (Alemania) publicaron un artículo en el que afirmaron haber conseguido hidrógeno metálico a presiones entre 2,6 y 3 millones de atmósferas, pero su hallazgo fue posteriormente cuestionado por otros investigadores [3,4]. En 2015, un grupo de investigadores de los Sandia National Laboratories (EE.UU) publicaron unos prometedores resultados tras llevar a cabo una serie de experimentos empleando la llamada máquina Z, un moderno generador de ondas electromagnéticas de alta frecuencia [5]. Estos experimentos se realizaron aplicando ondas de choque combinadas con enormes campos magnéticos y parece que han constituido un claro progreso en una búsqueda que dura ya varias décadas. Sin embargo, y a pesar de los avances realizados en los últimos años, las condiciones de presión y temperatura para la síntesis del hidrógeno metálico todavía no están totalmente definidas y la investigación prosigue en la actualidad.

La búsqueda del hasta ahora esquivo hidrógeno metálico no se limita a los experimentos de laboratorio, sino que se extiende al espacio. Desde hace tiempo, los científicos piensan que existen grandes masas de hidrógeno metálico líquido en el interior de Júpiter y quizá también en algunos grandes planetas extrasolares. Júpiter es el mayor de los planetas de nuestro sistema solar y su masa es unas 320 veces mayor que la de la Tierra. Su atmósfera está formada por  90 % de hidrógeno,  10% de helio y una cantidad inferior al 0.1 % de metano, agua, amoníaco, sulfuro de hidrógeno y otros gases. Las capas interiores del planeta están también mayoritariamente compuestas por hidrógeno y se cree que su relativamente pequeño núcleo es rocoso. Debido a su enorme masa, la presión en Júpiter aumenta desde unas dos atmósferas en zonas de su superficie hasta unos 100 millones de atmósferas en su núcleo. Los científicos están convencidos de que el aumento de presión en el interior de Júpiter tiene que resultar inevitablemente en la transformación del hidrógeno molecular en hidrógeno metálico a una cierta profundidad, si bien todavía no se sabe cuál es esa profundidad. La confirmación de la existencia de una capa de hidrógeno metálico y la medida de su espesor resultarán fundamentales para explicar cómo se genera el enorme campo magnético de Júpiter. Actualmente se piensa que este campo magnético se debe a la combinación de grandes masas de hidrógeno metálico (que se comporta como un excelente conductor de electrones) con la rápida rotación de Júpiter, cuyo día apenas dura 10 horas.

El pasado 4 de julio de 2016 llegó a Júpiter, después de casi cinco años de viaje, la sonda espacial Juno. Enviada por la NASA, Juno tiene como misión principal estudiar la gravedad y los campos magnéticos de Júpiter. Para ello orbitará alrededor de los polos del planeta hasta febrero de 2018. Durante las 37 órbitas que realizará enviará constantemente a la Tierra medidas del campo magnético y de la composición de Júpiter (1). El análisis de esas medidas permitirá comprender mejor cómo funciona la inmensa dinamo de Júpiter y qué papel juega el hidrógeno metálico en ella. Mientras tanto, los científicos seguirán intentando en la Tierra sintetizar esa extraordinaria forma de la materia.






Notas:
(1) Para más información sobre la sonda espacial Juno el lector puede consultar la siguiente página web: https://www.nasa.gov/mission_pages/juno/main/index.html


Bibliografía:
[1] On the possibility of a metallic modification of hydrogen (1935) E. Wigner & H.B. Huntington. Journal of Chemical Physics 3 (12): 764.
[2] Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar) (1996) S.T. Weir, A.C. Mitchell & W. J. Nellis. Physical Review Letters 76: 1860.
[3] Conductive dense hydrogen (2011) M.I. Eremets & I.A. Troyan. Nature Materials  10, 927–931.
[4] Has Metallic Hydrogen Been Made in a Diamond Anvil Cell? (2012) Nellis, W.J., Arthur L. Ruoff & Isaac F. Silvera. arXiv:1201.0407.
[5] Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium (2015) M. D. Knudson1, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson & R. Redmer. Science 348 (6242):1455.




Carlos M. Pina
Doctor en Ciencias Geológicas
Profesor Titular, Universidad Complutense de Madrid





¿Qué son los cuasicristales? - Carlos M. Pina

¿Qué son los cuasicristales?
(Por Carlos M. Pina)



(Noviembre 2016)


Buena parte de la materia sólida que vemos a nuestro alrededor se encuentra en lo que se conoce como estado cristalino. Este estado consiste en una ordenación periódica de millones de átomos a lo largo de las tres direcciones del espacio. Dependiendo de la fórmula química de cada compuesto y de las condiciones de presión y temperatura, el ordenamiento atómico de los cristales podrá ser diferente, pero éste siempre será periódico. A finales del siglo XIX, los cristalógrafos demostraron que solo existen 230 esquemas estructurales diferentes para ordenar átomos de forma periódica en el espacio tridimensional. Estos esquemas se denominan grupos espaciales.

A cualquier sustancia que cristalice a una presión y temperatura determinadas se le puede asignar uno y solo uno de estos 230 grupos espaciales. La limitación de los esquemas estructurales de los cristales se debe, precisamente, a la naturaleza periódica de la disposición de sus átomos. Aunque la deducción de los 230 grupos espaciales tridimensionales es compleja e implica elaborados razonamientos geométricos, podemos adquirir una buena idea de su fundamento con un simple ejemplo limitado a las dos dimensiones. Imaginemos que queremos rellenar completamente una superficie con polígonos iguales de cartón colocándolos unos junto a otros. Tarde o temprano nos daremos cuenta de que eso solo es posible si lo hacemos con triángulos equiláteros, rombos, romboides, rectángulos, cuadrados o hexágonos. Si lo intentamos hacer con otros polígonos como, por ejemplo, pentágonos o decágonos veremos que no hay forma de colocarlos sin que queden huecos entre ellos (ver  figura 1).

Fig.1 A) Relleno completo de una superficie con hexágonos. B) Imposibilidad de rellenar completamente una superficie con pentágonos.


En el caso tridimensional podríamos hacer algo similar a lo que hemos hecho en dos dimensiones y comprobaríamos que seríamos capaces de rellenar completamente y de forma periódica el espacio con ciertos poliedros (como cubos, prismas de base cuadrada, prismas hexagonales, etc.) Sin embargo, no podríamos hacerlo con otros poliedros como, por ejemplo, dodecaedros o icosaedros. Esto quiere decir que la formación de un cristal periódico solo es posible mediante la colocación ordenada de unidades estructurales con formas específicas. Estas unidades estructurales se denominan celdas cristalinas elementales y contienen los átomos que forman cada compuesto químico.

Una consecuencia del ordenamiento periódico de las celdas elementales en el interior de los cristales es que éstos muestran formas poliédricas externas con simetrías compatibles con dicho ordenamiento. Así, dentro de la inmensa variedad de morfologías que presentan los cristales en la naturaleza encontraremos cubos, prismas, pirámides y combinaciones de estas formas, pero nunca veremos dodecaedros e icosaedros regulares, ni tampoco poliedros que tengan simetrías de orden cinco. Desde el punto de vista de la Cristalografía clásica, estas simetrías de orden cinco se consideran “prohibidas” por ser incompatibles con la periodicidad interna de las estructuras de los cristales.

La naturaleza periódica de las estructuras cristalinas se demostró gracias a los experimentos de difracción de rayos X realizados por Max von Laue y colaboradores en 1912 [1]. El experimento original de Laue consistió en hacer incidir un haz de rayos X sobre un cristal, detrás del cual se había colocado una placa fotográfica. Los rayos X, al atravesar el cristal, interfirieron con sus átomos y produjeron un patrón de difracción que quedó impresionado en la placa fotográfica. Este patrón resultó ser una distribución periódica de puntos (máximos de difracción), algo que solo puede ocurrir cuando el objeto que produce la difracción es también periódico. En las décadas siguientes al experimento de Laue se registraron miles de patrones de difracción de cristales, tanto empleando rayos X como haces de electrones acelerados. Todos esos patrones resultaron ser patrones periódicos y su análisis permitió determinar y estudiar las estructuras cristalinas de innumerables compuestos, tanto naturales como sintéticos. La Cristalografía había confirmado experimentalmente su hipótesis de la periodicidad de las estructuras cristalinas y contaba con una herramienta formidable para investigarlas: la difracción.

Pero en 1982 sucedió algo sorprendente. En el transcurso de una investigación sobre ciertas aleaciones sintéticas de aluminio y manganeso, el científico Dan Shechtman observó unos enigmáticos patrones de difracción de electrones que tenían simetría pentagonal [2].  Esos patrones de difracción anómalos no podían corresponder a un ordenamiento periódico de los átomos de las aleaciones que estaba estudiando, pues mostraban simetrías cristalográficamente prohibidas. Sin embargo, estaba claro que la difracción había sido producida por una estructura muy ordenada. ¿Era posible que existiera un estado de la materia en el que los átomos estuvieran ordenados de forma diferente a como lo hacen dentro de los cristales? La publicación de los patrones de difracción de Shechtman desconcertó a los cristalógrafos pues constituía un desafío a los fundamentos de la Cristalografía. Durante varios años, los científicos, con el prestigioso e influyente premio Nobel de Química Linus Pauling a la cabeza, intentaron conciliar los principios de la Cristalografía clásica con las observaciones de patrones de difracción con simetrías “no cristalográficas”. Para ello idearon complejos modelos estructurales según los cuales la asociación de un gran número de cristales periódicos con diferentes orientaciones podría generar patrones de difracción con simetrías de orden cinco o diez. Estos modelos resultaron ser excesivamente complicados y muchas veces forzados y, finalmente, la solución al enigma de los patrones de Shechtman resultó ser tan sencilla como extraña: los átomos de algunos materiales pueden ordenarse en su interior a lo largo de grandes distancias de manera no periódica. Para entender ese nuevo tipo de ordenamiento atómico resultó fundamental el trabajo del matemático Roger Penrose sobre teselados no periódicos [3]. Penrose estableció una serie de reglas de ordenamiento de paralelogramos que permitían rellenar el espacio bidimensional de forma completa pero sin que ese ordenamiento fuera periódico (ver figura 2).

Fig.2 Teselado de Penrose en el que la superficie queda completamente cubierta al combinar rombos de dos tamaños según ciertas reglas de construcción. Como puede verse, la simetría de este teselado es localmente pentagonal en los puntos A y B pero la secuencia de los vértices de los rombos entre esos dos puntos no es periódica.


En tres dimensiones se pueden establecer unas reglas de ordenamiento de poliedros, similares a las que generan los teselados de Penrose, que permitan el relleno no periódico del espacio tridimensional. Cualquier compuesto químico cuyos átomos se sitúen en los vértices de los poliedros dispuestos según esas reglas tendrá una estructura cuasiperiódica y producirá patrones de difracción con simetrías “no cristalográficas”. Uno de esos compuestos fue precisamente el que encontró Shechtman cuando investigaba sus aleaciones de aluminio y manganeso. Los materiales con este tipo de ordenamiento interno de sus átomos se denominan desde entonces cuasicristales, un nombre que proviene de la contracción de “cristales cuasiperiódicos”.

El descubrimiento de los cuasicristales obligó a los científicos a revisar los conceptos cristalográficos de ordenamiento atómico y estructura cristalina. Una consecuencia de esa revisión del paradigma cristalográfico fue la redefinición de cristal. En 1991, la International Union of Crystallography estableció que un cristal es todo aquel sólido que tiene un diagrama de difracción esencialmente discreto (1). Como puede verse, en esta definición se ha excluido toda referencia al orden periódico y la naturaleza cristalina (o cuasicristalina) de un material queda evidenciada por la difracción que produce, independientemente del tipo de orden que muestran sus  átomos (ver figura 3).

Figura 3. Diagramas de difracción producidos por un cristal y un cuasicristal. A) Diagrama de difracción de rayos X con simetría cuaternaria correspondiente a un cristal cúbico de sulfuro de zinc (blenda) [4]. B) Diagrama de difracción de electrones de un cuasicristal icosaédrico de la aleación HoMgZn (2). Nótese la simetría de orden diez de la distribución de puntos de difracción.


Los cuasicristales poseen algunas propiedades específicas relacionadas con la aperiodicidad de los enlaces atómicos dentro de sus estructuras: son relativamente frágiles, malos conductores de la electricidad y del calor, y muestran bajos coeficientes de fricción. Aprovechando estas propiedades, algunos materiales cuasicristalinos se están empezando a utilizar como aislantes térmicos, como componentes de algunos LEDs, en sistemas que convierten calor en electricidad, e incluso se han fabricado sartenes antiadherentes con ellos.

Aunque la gran mayoría de los cuasicristales que se conocen en la actualidad han sido sintetizados en el laboratorio, recientemente se han descubierto los primeros cuasicristales naturales. El hallazgo se produjo al estudiar un meteorito encontrado en 1979 en la región de Khatyrka en la Península de Kamchatka (Rusia) y que había sido adquirido en 1990 por el Museo de Historia Natural de Florencia (Italia).

El equipo del profesor Luca Bindi ha logrado identificar mediante difracción de electrones dos cuasicristales diferentes dentro de ese meteorito: uno con simetría icosaédrica y denominado icosaedrita por la International Mineralogical Asociation y otro, con simetría decagonal, llamado decagonita [5,6]. Según recientes experimentos de síntesis llevados a cabo empleando elevadísimas presiones, la formación de cuasicristales como los descubiertos en el meteorito de Khatyrka se debería a la colisión de asteroides dentro de nuestro sistema solar [7]. Sin embargo, es posible que los cuasicristales puedan formarse también bajo otras condiciones y no está completamente descartado que se encuentren en el futuro minerales cuasicristalinos de origen terrestre.

Cuando Isaac Asimov publicó su libro “Cien preguntas básicas sobre la Ciencia” faltaba casi una década para que se descubrieran los cuasicristales y algunos años más para que la comunidad científica aceptara que eran materiales con una ordenación atómica diferente de la que presentan los cristales. Teniendo en cuenta lo que sabemos actualmente sobre los cuasicristales, y lo que nos queda aún por saber, seguramente Asimov no se resistiría hoy a incluir un capítulo sobre ellos en una edición revisada de su libro.

 




Notas:
(1) http://reference.iucr.org/dictionary/Crystal
(2) https://commons.wikimedia.org/w/index.php?curid=10094837

Bibliografía:
[1] Interferenz-Erscheinungen bei Röntgenstrahlen (1912) W. Friedrich, P. Knipping & M. Laue, München : Verl. der Königlich Bayer. Akad. der Wiss., S. 303 – 322, 363 – 373.
[2] Metallic phase with long-range orientational order and no translational symmetry (1984) D.S. Shechtman, I. Blech, D. Gratia. J.W.Cahn. Physical Review Letters 53 (20): 1951. 2.
[3] The role of Aesthetics in Pure and Applied Mathematical Research (1974) R. Penrose. Bulletin of the Institute of Mathematics and its Applications. 10: 266Interferenzerscheinungen bei Röntgenstrahlen (1913) W. Friedrich, P. Knipping, M. Laue, M. Annalen der Physik 346 (10): 971.
[4] Interferenzerscheinungen bei Röntgenstrahlen (1913) W. Friedrich, P. Knipping, M. Laue, M. Annalen der Physik 346 (10): 971.
[5] Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal (2011) L. Bindi, P.J. Steinhardt, N. Yao, P.J. Lu. American Mineralogist 96 (5-6): 928.
[6] Natural quasicrystal with decagonal Symmetry (2015) L. Bindi, N. Yao, Ch. Lin, L.S. Hollister, Ch.L Andronicos, V.V. Distler, M.P. Eddy, A. Kostin, V. Kryachko, G.J. MacPherson, W.M. Steinhardt, M. Yudovskaya P.J. Steinhardt. Scientific Reports 5:9111, PMID 25765857.
[7] Shock synthesis of quasicrystals with implications for their origin in asteroid collisions. (2016)  P. D. Asimow, Ch. Lin, L. Bindi, Ch. Maa, O. Tschaunere, L. S. Hollisterg,  P. J. Steinhardt Proceedings of the National Academy of Sciences of the United States of America 113(26):7077



Carlos M. Pina
Doctor en Ciencias Geológicas
Profesor Titular, Universidad Complutense de Madrid