lunes, 5 de noviembre de 2018

¿Planetas? - Pablo Marcos Arenal

¿Por qué no todos los objetos que orbitan alrededor del Sol son llamados planetas?
(Por Pablo Marcos Arenal)



Si buscamos este capítulo en el libro de Asimov que aquí estamos revisando, nos encontramos con que su título original era “¿En qué difiere Plutón con todos los demás planetas?”. Ocurre que, desde la XXVI Asamblea General de la Unión Astronómica Internacional (IAU por sus siglas en inglés), Plutón dejó de considerarse un planeta. Es por esto que era necesario cambiar el título del capítulo y centrarnos en explicar qué es un planeta y en qué se distingue de los demás objetos celestes que orbitan alrededor de nuestro Sol.

Bien podríamos simplemente responder a la pregunta atendiendo a la definición  de planeta que nos ofrece el diccionario; Según la Real Academia de la Lengua Española (RAE):
«Planeta: Del lat. planēta, y este del gr. πλανήτης planḗtēs; propiamente 'errante'.
»Cuerpo celeste sin luz propia que gira en una órbita elíptica alrededor de una estrella, en particular los que giran alrededor del Sol: Mercurio, Venus, la Tierra, Marte, Júpiter, Saturno, Urano, Neptuno y Plutón».

          Esta definición [1] nos deja en el mismo lugar que nos dejó Asimov allá por 1975 en el capítulo original, con Plutón en la lista de planetas. Conclusión: la definición de planeta es obsoleta y tendremos que atender a la resolución de la IAU para encontrar la respuesta rigurosa que estamos buscando. Lo cierto es que nuestro objetivo aquí no es hacer una disertación lingüística y llevar el tema al terreno de la semántica. Nuestro objetivo es aprender ciencia… y entenderla. 

          Aun así, todo esto no hace sino plantearnos nuevas cuestiones: ¿Por qué toda esta controversia?, ¿por qué sacar a Plutón de la lista de planetas si sus características no han cambiado y son bien conocidas?, ¿qué ha cambiado para que la IAU tomase esta polémica decisión? Podemos decir que mucha culpa de todo esto la tiene un objeto celeste descubierto por Michael E. Brown y su equipo el 5 de Enero de 2005 desde Monte Palomar. Este objeto, que se bautizó como Eris, es más masivo que Plutón (la masa de Eris es de ~1,66×1022 kg frente a los ~1,305×1022 kg de Plutón) y tiene una órbita elíptica alrededor del Sol, por lo que la NASA llego a considerarlo el décimo planeta del sistema solar. Bien podría haberse actualizado la lista de planetas en aquel momento para simplemente añadir a Eris, pero ocurría que poco tiempo antes se había descubierto otro objeto con un tercio de la masa de Plutón y forma elipsoidal que también pudiera haber sido considerado un planeta [2]. La sospecha de que seguirían apareciendo más objetos de este tipo y que la lista de planetas tendría que actualizarse con relativa frecuencia, llevó a la necesidad de encontrar una definición de planeta que fuese inequívoca y aceptada por la mayoría de la comunidad científica.


1        ¿Qué es un planeta?

El 24 de agosto de 2006 la IAU acordó en su resolución B5, por amplia mayoría, que un planeta del sistema solar es un cuerpo celeste que:
1)       Órbita alrededor del Sol.
2)       Tiene suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuma una forma en equilibrio hidrostático (prácticamente esférica).
3)       Ha limpiado la vecindad de su órbita.
Según esta definición, el sistema solar consta de ocho planetas: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Además, se designa una nueva categoría: planeta enano. La única diferencia entre planeta y planeta enano es que este último no ha limpiado la vecindad de su órbita. Por si hubiese alguna duda, la resolución B6 de la IAU zanja: Plutón es un planeta enano.

          Así pues, la diferencia entre planeta y planeta enano es que haya limpiado, o no, la vecindad de su órbita. Esto quiere decir que en la vecindad de la órbita del objeto no hay cuerpos de tamaño comparable al suyo, excepto sus satélites u otros objetos bajo la influencia de su campo gravitatorio; se dice en este caso que el objeto tiene predominancia gravitatoria. En el caso de Plutón ocurre que está ligado gravitacionalmente con Neptuno, y en su recorrido alrededor del Sol coincide con objetos del Cinturón de Kuiper, como ilustra el dibujo de abajo.


Figura 1: Plutón, Eris y el Cinturón de Kuiper. Crédito: www.nature.com

          En esta ilustración parece claro que Neptuno debe ser considerado un planeta y Plutón y Eris deben ser considerados planetas enanos, puesto que en la vecindad de sus órbitas hay multitud de objetos del Cinturón de Kuiper. Pero surgen nuevas preguntas: ¿y si fuese Plutón el que tuviese predominancia gravitatoria sobre Neptuno?, ¿cómo se mide dicha predominancia?, ¿por qué los planetas enanos tienen órbitas más excéntricas que los planetas propiamente dichos?, ¿no sería más fácil discriminarlos atendiendo a un criterio de excentricidad?

          En realidad no existe un criterio oficial que determine cuando un planeta ha limpiado la vecindad de su órbita o tiene predominancia gravitatoria, aunque algunos astrónomos sí han estudiado la cuestión y ofrecen diferentes criterios para proporcionar unos valores cuantificables que permitan hacer la distinción de manera inequívoca. Los criterios más conocidos son los de Stern–Levison, Soter y Margot, aunque lo cierto es que un planeta nunca puede limpiar completamente su vecindad orbital porque a lo largo de su vida aparecerán asteroides y cometas que interaccionen con el planeta al cruzar su órbita y puedan perturbar su predominancia gravitacional con el paso del tiempo.  Atendiendo a cualquiera de los criterios mencionados, utilizando las masas y órbitas de los candidatos a planeta, no existe ninguna duda de que los planetas deben ser los 8 propuestos por la IAU, y que es Neptuno el que tiene predominancia gravitatoria sobre Plutón y no al revés.

          Por otro lado, la excentricidad de una órbita no tiene porque estar ligada con la predominancia gravitatoria. La excentricidad de una planeta nos dice lo cerca que está de tener una órbita perfectamente circular (excentricidad igual a cero). La excentricidad de las órbitas de los 8 planetas es menor de 0.1 (oscilan entre 0.007 de Venus y 0.093 de Marte) excepto la de Mercurio, que es de 0.206. Por tanto, al tener Mercurio una excentricidad mayor que la de los planetas enanos Ceres (0.080), Haumea (0.189) y Makemake (0.159), queda claro que no se puede utilizar como criterio para discernir entre unos y otros.


2        Equilibrio hidrostático

Habiendo aclarado el tercer punto de la resolución de la IAU, y dado que el punto primero no necesita mucha aclaración, nos queda explicar el segundo punto. En este punto nos encontramos con otro concepto al que debemos prestar atención: ¿qué quiere decir que su gravedad supere las fuerzas del cuerpo rígido y asuma una forma en equilibrio hidrostático?  Pues simplemente que tiene forma (aproximadamente) esférica. De nuevo, se puede entrar en la discusión de qué es aproximadamente esférico, pero resulta evidente que ninguno de los planetas puede llegar a ser una esfera perfecta. En un cuerpo de tamaño planetario y en un entorno como el del sistema solar (llegan más de 40.000 toneladas de material a la Tierra cada año) siempre aparecerán perturbaciones que le alejen de ser una esfera matemáticamente perfecta.

Podemos considerar un objeto celeste con una masa cualquiera, pero no con una forma cualquiera; imaginemos el típico satélite artificial con sus paneles solares desplegados a los lados de su cuerpo: tiene la forma que los ingenieros han considerado que es óptima para su función, muy lejos de ser esférica. Consideremos que éste es un objeto celeste, orbitando alrededor del Sol ¿podría ser considerado un planeta? Cumple el punto 1, pero incumple los puntos 2 y 3 que exige la IAU para serlo. Incumple el tercer punto porque no habría limpiado su vecindad orbital. Como ya hemos visto, no puede tener predominancia gravitatoria pues solo tiene unas pocas toneladas de masa y acabaría viéndose atrapado por la atracción gravitatoria de otro cuerpo más masivo. Pero, ¿qué ocurriría si tuviese la misma forma que hemos propuesto pero una masa muy superior? Imaginemos que pudiésemos construir un satélite mucho más grande y masivo, y que podemos lanzar este inmenso satélite al espacio y colocarlo en la órbita de Mercurio (por ejemplo). Pongamos también que tiene una masa mayor que la de Mercurio, de manera que fuera nuestro satélite el que tuviese predominancia gravitatoria. Ahora sí estarían cumpliéndose los puntos primero y tercero, pero seguiría sin cumplir el segundo por mantener su forma original, lejos de ser esférica, y no podría considerarse un planeta. En realidad este sería el menor de los problemas de nuestro satélite, puesto que un objeto de tal masa con una forma irregular, acabaría colapsando sobre su propio centro de masas, rompiendo las fuerzas de sólido rígido y adoptando un estado de equilibrio hidrostático. Las estructuras que soportan los paneles solares colapsarían por su propia gravedad y caerían como una torre de fichas de dominó que hubiésemos hecho demasiado alta. Y lo mismo ocurriría con cualquiera de las partes que sobresaliesen de su irregular estructura. 

Tendría que pasar algún tiempo hasta que nuestro maltrecho satélite llegase a tener forma aproximadamente esférica, pero es lo que acabaría ocurriendo. Un cuerpo celeste con una mayor constitución gaseosa que un cuerpo rocoso tardará mucho menos en adoptar una forma esférica, pero en el tiempo necesario para el proceso de formación planetaria es lo que acaba ocurriendo tanto con uno como con otro. 

          Existen discrepancias respecto de si la definición de planeta que propuso la IAU y que aquí hemos visto es la más apropiada, y hubo muchas protestas cuando se eliminó a Plutón de la lista de planetas. En cualquier caso, esta definición es actualmente aceptada por la inmensa mayoría de la comunidad científica y permite determinar inequívocamente si un objeto celeste es un planeta o no, por lo que a partir de ahora, si descubres algún nuevo cuerpo celeste en nuestro sistema solar, podrás saber si es o no un planeta. ¡Mucha suerte en la búsqueda!


Notas:
[1]. Podría discutirse que otros diccionarios en otras lenguas pueden ofrecer definiciones más rigurosas que la que nos propone la RAE, pero no es el caso de los reputados diccionarios ingleses Cambridge Dictionary y Merriam-Webster (invito a los curiosos a buscar las definiciones que ofrecen e, inevitablemente,  a quedar atónitos). Consideraremos la definición de la RAE tan buena como la de cualquier otro diccionario.
[2]. Existe una polémica sobre el equipo descubridor de este objeto entre los observatorios de Sierra Nevada y Monte Palomar; tanto es así que la IAU no reconoce un descubridor de manera oficial. Aunque la IAU reconoce que el lugar del descubrimiento es Sierra Nevada, el nombre del objeto (el nombramiento es un privilegio otorgado al descubridor) es el propuesto por el equipo de Monte Palomar: Haumea.

Bibliografía:
 "IAU 2006 General Assembly: Resolutions 5 and 6" , IAU. 24 de agosto de 2006.
 "IAU 2006 General Assembly: Result of the IAU Resolution votes" (Press release), IAU . 24 de agosto de 2006.

Pablo Marcos Arenal
Doctor Astronomía
Investigador del Grupo Aegora de la Universidad Complutense de Madrid

2 comentarios: