domingo, 23 de febrero de 2020

¿Cómo funciona un microscopio electrónico? - Francisco J. Terán

¿Cómo funciona un microscopio electrónico? ¿Existen microscopios basados en otras partículas fundamentales?
(Por Francisco J. Terán)

(Noviembre 2016)


Desde finales del siglo XVI, la microscopía se ha venido desarrollando como una rama de la ciencia con el fin de proporcionar tecnologías que faciliten la observación y el estudio de objetos demasiado pequeños de ser percibidos a simple vista. A día de hoy, no está del todo claro si la primera “mirada” de la microscopía fue puesta en el firmamento para estudiar esas “pequeñas luces” que allí brillan denominadas "astros" -Galileo Galilei no fue el pionero en la creación del telescopio pero si quien más lo mejoró y publicitó (1)- o en los microorganismos -Antonie van Leeuwenhoek fue pionero en microbiología por sus mejoras en el microscopio (2)-.La microscopía óptica, basada en el uso de luz, lentes y otros componentes ópticos, fue la primera en desarrollarse. Con ella se asentaron buena parte de los fundamentos generales para otras microscopías que también emplean ondas para sondear la materia en la escala submicrométrica. Así, se abrieron las puertas a grandes avances en distintas áreas de la ciencia, desde el estudio de la célula a las propiedades de la luz o la materia. Esto último fue clave para el descubrimiento de ciertas leyes de la física a partir de las cuales han surgido microscopías como la electrónica, permitiendo la visualización y manipulación de objetos en la escala del nanómetro (1 nm = 10-9 m). A principios del siglo XX, de Broglie (3) enunció el carácter ondulatorio del electrón. La "óptica electrónica" superó las limitaciones de la microscopía óptica en el rango visible (400-700 nm) gracias a que de Broglie relacionó la longitud de onda del electrón con su energía cinética (𝜆dB=h/p, donde h es la constante de Planck y p el módulo del momento del electrón). De esta forma, acelerando al electrón (i.e. aumentando p) se puede reducir 𝜆dB varios órdenes de magnitud. Consecuentemente, se pueden lograr aumentos del orden de x106 con una resolución espacial del orden del angstrom (1 Å= 10-10 m), valores muy alejados de los que ofrece la microscopía óptica tanto en aumentos (~x103) como en resolución espacial (~200 nm).

A continuación describiremos los fundamentos básicos de las modalidades más relevantes de la microscopía electrónica. Para finalizar, haremos mención a otras microscopías basadas en el carácter ondulatorio de otras partículas.


1        Así funciona un microscopio electrónico

En la actualidad, la microscopía electrónica es una técnica ampliamente extendida para caracterizar formas, dimensiones, superficies y composición química de la materia en la escala del nanómetro. A pesar de compartir fundamentos ondulatorios teóricos con la microscopía óptica, la electrónica  implica una tecnología mucho más compleja. La microscopía electrónica posee principalmente tres modalidades: microscopía electrónica de barrido (en inglés Scanning Electron Microscope, SEM), transmisión (en inglés, Transmission Electron Microscopy, TEM), o de efecto túnel (Scaning Tunelling Microscope, STM). De estas, se derivan a su vez otras modalidades subyacentes como la microscopía electrónica de transmisión en barrido (en inglés, scanning transmission electron microscope) o la microscopía electrónica de reflexión (en inglés, reflection electron microscope).

Históricamente, el primer microscopio electrónico se desarrolló en los años 30 del siglo XX. Ernst Ruska desarrollo en Alemania el TEM  cuyo diseño original mantiene en la actualidad las partes principales. En su origen, el desarrollo del TEM se benefició además de la demostración por Ruska que un electroimán actúa como una lente electrónica. Ambos avances, la capacidad de controlar la energía del electrón (i.e., 𝜆dB), y de generar un haz de electrones de trayectoria variable, hicieron posible la construcción el primer TEM en 1933. Siemens inicio su comercialización en 1939. De esta manera se inició el estudio de objetos cuyas dimensiones están en la escala del nm, que no ha parado hasta hoy.  En paralelo al desarrollo del TEM, Manfred von Ardenne inventa en 1937 el SEM apoyándose en descubrimientos de Max Knoll, quien también participo en la invención del TEM. El funcionamiento del SEM se basa en el barrido de una región espacial mientras incide un haz de electrones. Así, se puede estudiar superficies en base al análisis de la interacción de los electrones con la superficie, por ejemplo, analizando los electrones secundarios emitidos por los átomos de la superficie. Finalmente, en 1981 Gerd Binnig y Heinrich Rohrer desarrollan el STM, un microscopio electrónico basado en el efecto túnel, un fenómeno cuántico que permite a un electrón atravesar una barrera de  potencial mayor que su energía cinética. Es decir, permitir el paso de una corriente de electrones desde el último átomo de una punta metálica a otro ubicado sobre la superficie de la muestra (metálica o semiconductora). Esto es posible cuando la distancia entre la punta y la muestra es de unos pocos Å  y se aplica una tensión generalmente inferior a tres voltios entre la punta y la muestra (4). De esta forma se pueden obtener imágenes sin precedentes de átomos individuales en superficies con una resolución inferior a 1 Å, tanto lateral como verticalmente. La clave de la sensibilidad STM reside en que la corriente túnel de electrones varía un orden de magnitud por Å de distancia punta a muestra. Pequeñas variaciones topográficas se traducen en grandes cambios de corriente. Debido a la naturaleza del propio efecto túnel, la corriente de electrones que "tunelean" desde la punta hasta los átomos de la superficie sondea orbitales electrónicos de valencia del átomo. Por tanto, la microscopía STM también da información de los orbitales electrónicos, permitiendo describir la estructura electrónica de las superficies. Pero la característica más fascinante del STM es la manipulación de la posición de átomos individuales, variando su ubicación espacial a voluntad (5). Uno de los componentes básicos del STM a los que debe su éxito y avance son los soportes piezoeléctricos sobre los que se montan las puntas. Estos soportes permiten mover la punta con total precisión distancias < 1 Å y mantenerla días con plena fiabilidad. Esta microscopía despierta un interés exclusivamente académico, para estudiar las propiedades de la materia relacionadas con la morfología de superficies, moléculas individuales, propiedades eléctricas y magnéticas de moléculas y átomos individuales, afinidades y enlaces electrónicos de átomos y moléculas individuales, síntesis de nuevos materiales, propiedades electrónicas de materiales topológicos, entre otros temas.

Como se señalaba anteriormente, las microscopías electrónicas (salvo la STM) se benefician de la modulación de 𝜆dB a través de aumentar el momento del electrón para alcanzar extraordinarios valores de resolución espacial y aumentos. Pero es sin duda, el análisis de los distintos procesos de interacción de un electrón con los átomos de la muestra en estudio lo que marca la mayor diferencia con la microscopía óptica (ver figura 1). Así, las microscopías SEM y TEM son las técnicas de caracterización estructural y composicional de nanomateriales más empleadas tanto por científicos como por  ingenieros. Ambas tienen similitudes y diferencias en su tecnología. Las similitudes son en cuanto al uso de fuentes de electrones para generar el haz, lentes electromagnéticas para focalizarlo en una determinada ubicación espacial de la muestra, y sistemas de vacío (vacío más alto para TEM) para minimizar la desviación del haz a fin de mejorar la nitidez de la imagen. Por un lado, la generación del haz de electrones emplea habitualmente filamentos de tungsteno o dispositivos de efecto campo con el fin de crear haces de electrones coherentes que mejoren el contraste de la imagen. Tras la generación del haz de electrones en la fuente, se les somete a un alto voltaje con respecto a la muestra para dotarles de un momento p definido. Estos valores de voltaje suelen ser de unos  ~100 kV para un TEM estándar hasta 200 kV para un TEM de alta resolución. En el caso del SEM, el voltaje aplicado es inferior a los 40 kV. Por otro lado, las lentes electromagnéticas se basan en la fuerza que ejerce un campo magnético sobre una carga eléctrica que se mueve con una determinada energía cinética = q𝜈͞ x   . También, los campos eléctricos pueden deflectar un ángulo fijo la trayectoria de un electrón. La aplicación de una fuerza magnética y/o eléctrica permite desplazar lateralmente la trayectoria de un haz de electrones para focalizarlo en una posición especial determinada. Para ello, se requiere que la muestra esté en un vacío cuya presión típica oscile entre 10-4 y 10-8 Pa. La necesidad de vacío en la cámara de la muestra limita consecuentemente tanto el modo de introducir las muestras como su preparación. Así por ejemplo, las muestras biológicas (que poseen un gran contenido en agua) requieren ser inmovilizadas en resinas plásticas (fijación química, intercambio de agua e inclusión en resina) o ser preservadas en frío (crío-fijación) para no alterar las condiciones de vacío.

Por el contrario, los SEM y TEM poseen grandes diferencian en cuanto al tipo de muestras que pueden estudiar y a su preparación. Por un lado, las muestras SEM  han de ser conductoras o de lo contrario ser metalizadas para evitar acumulación de electrones (carga) lo cual altera la calidad de la imagen. Por otro lado, las muestras TEM pueden ser cualquier tipo de muestras amorfas, cristalinas, biológicas, etc. Su única condición es que el espesor ha de ser ultrafino (inferior a 500 nm) para permitir la transmisión de electrones a través. También, las técnicas de visualización de imágenes son distintas para el SEM y TEM ya que analizan diferentes procesos de interacción electrón-materia (ver figura 1), sean relacionados con la transmisión (TEM) o con la difusión (SEM) del electrón sobre la muestra. Así, el TEM proporciona imágenes de mayor resolución (hasta 3 Å cuando la aberración esférica de tercer orden está corregida (6)) que son una proyección bidimensional generada por la superposición de las funciones de ondas de los electrones que atraviesan la muestra. Sin embargo un SEM proporciona imágenes tridimensionales de la superficie pero con una menor resolución espacial (~10 nm). A los correspondientes sistemas de visualización SEM y TEM, se les puede complementar con otro tipo de análisis (rayos X, catodoluminescencia, pérdidas de energía del electrón, procesos Auger, electrones secundarios, etc.…) que proporcionan valiosa información sobre la muestra (composición química, número atómico, estado electrónico). En la actualidad, la gran revolución ha llegado de la mano de los detectores directos de electrones, que han permitido la toma de datos con mucha menor intensidad del haz y mejor contraste. Tradicionalmente, los histogramas o imágenes de SEM y TEM se han venido haciendo en blanco y negro, porque la técnica elimina los matices cromáticos. Recientemente se ha logrado la manera de colorear dichas imágenes empleando un detector que captura los electrones que devuelven los iones en color (7). También, por el avance informático que permite controlar y analizar imágenes en las que se combinan imágenes morfológicas con "mapeados" de la muestra en relación a distintos análisis (por ejemplo, presencia de un elemento químico). La llegada de las cámaras CCD y la mejora en la informática permitió la automatización de los procesos de visualización de imágenes y de control de los componentes del microscopio.

(pinchar en la imagen para aumentar)
Figura 1: Representación esquemática de las distintas modalidades de interacción de un haz de electrones y la materia.


2        Otras microscopías basadas en otras partículas fundamentales

Como hemos mencionado anteriormente, la microscopía electrónica se basa en el carácter ondulatorio del electrón para el análisis de la materia. No existen otras microscopías alternativas basadas en el carácter ondulatorio de otras partículas fundamentales con carga por la dificultad en las condiciones de su generación  y la imposibilidad de desarrollar fuentes (estas partículas se generan típicamente en instalaciones de alta energía). Sin embargo, si ha sido posible desarrollar microscopios que emplean haces de partículas más pesadas, como son los iones de gases nobles (He, Ne, Ar), moléculas de hidrogeno (H2) o mezclas de ambos. La invención de la microscopía de iones de campo (en inglés, Field Ion Microscopy, FIM)  por  Erwin Wilhelm Müller en 1951 permite analizar superficies con una metodología similar a la del SEM (análisis de electrones secundarios). Sin embargo, su resolución espacial (< 3 Å) es dos órdenes de  magnitud superior gracias a que la longitud de onda de los iones es más corta que la de los electrones. Otra de sus ventajas respecto al SEM es que la muestra no requiere ser un conductor eléctrico. Las generalidades del funcionamiento de un FIM son similares a las de un SEM, variando la fuente de ondas (iones), la refrigeración de muestra (a temperaturas entre 10 y 150 K) que está colocada en un soporte redondeado (de radio entre 10 y 100 nm) y el sistema de visualización de la superficie de la muestra que incluye placas con microcanales para amplificar la señal de los iones dispersados. La versión más avanzada del FIM es la que emplea iones de He comercializado desde 2007 (8) debido a que los iones de He no alteran la muestra en estudio por la ligera masa del He. Finalmente, mencionar que si bien la microscopía óptica se basa en luz visible, luz de alta energía como son los Rayos X (con longitudes de onda 2-4 nm, cien veces más pequeña que la luz visible) ofrece una resolución espacial del orden de los 30 nm. En 1950, Sterling Newberry desarrolló el primer microscopio de rayos X que fue comercializado por General Electrics. A día de hoy, se han realizado versiones que permiten un barrido de la muestra (en inglés, Scanning X-Ray microscope)  y se benefician de las cámaras CCD y el avance de la informática para el control del microscopio, y el análisis de imágenes.


Notas:
1. Gribbin, John (2006). Historia de la ciencia. 1543-2001. Crítica, p. 82.
2. Finlay BJ1, Esteban GF. Int Microbiol. 2001 Sep;4(3):125-33.
3. Louis Victor de Broglie, RECHERCHES SUR LA THÉORIE DES QUANTA (Ann. de Phys., 10e  série, t. III  (Janvier-Février 1925).
4. Gerd Binnig and Heinrich Rohrer" Scanning tunneling microscopy—from birth to adolescence" Rev. Mod. Phys. 59, 615 – Published 1 July 1987.
5. Famosa es la imagen de STM con el texto "IBM" que escribieron con átomos  individuales los descubridores del STM mientras trabajaban en el Centro de Investigación IBM en Zürich (Suiza).
6. La aberración esférica es el óptico por excelencia en la limitación de la resolución espacial  del TEM y SEM.
7. Adams, Stephen R. et al., Cell Chemical Biology, Volume 23, Issue 11, 1417-1427
8. Orion Helium Ion Microscope, ZEISS Group

Francisco José Terán Garcinuño
Doctor en Ciencias Físicas
Investigador en iMdea Nanociencia

jueves, 13 de febrero de 2020

Fusión Termonuclear ¿cuestión tecnológica, económica o política? - Julio Gutiérrez Muñoz

¿Se llegará a obtener energía gracias a la Fusión Termonuclear controlada? ¿Es una cuestión tecnológica, económica o política?
(Por Julio Gutiérrez Muñoz)

(Noviembre 2016)


Antes de comenzar a analizar estas preguntas, conviene dar unas pinceladas sobre qué es la Fusión Termonuclear y su nomenclatura habitual.

Las altas temperaturas necesarias para vencer la repulsión eléctrica de los núcleos a fusionar para obtener energía –millones de grados Celsius– hacen que los “combustibles” (normalmente Deuterio y Tritio) estén ionizados. Es decir, los átomos habrán perdido sus electrones y se encuentran en un estado denominado plasma, cuyas propiedades y comportamiento se conocen muy mal. Además, esas mismas temperaturas imposibilitan el confinamiento del plasma en recipientes, los cuales se volatilizarían al contacto con el gas ionizado. Actualmente, existen dos posibilidades, con ventaja sobre las demás barajadas hasta el momento, de controlar el proceso:

1) la fusión por confinamiento magnético, consistente en utilizar fuertes campos magnéticos para mantener el plasma en el interior de un recipiente, pero alejado de sus paredes

2) la fusión por confinamiento inercial, también llamada fusión por láser, consistente en comprimir en el vacío la mezcla de núcleos a fusionar hasta densidades extremas, mediante el bombardeo de haces de luz procedentes de un láser de gran energía.

Ambos tipos de dispositivos, en su evolución desde los comienzos de la fusión nuclear, han adquirido tamaños descomunales como acreditan las figuras 1 y 2, y ese es el primer problema –quizás el más grave que– aleja de la realidad práctica la obtención de la energía prometida.

Ante la complejidad de la fusión, sea cual sea el tipo de confinamiento, ¿qué cabe decir? En consecuencia, los avances tecnológicos tienen, y seguramente tendrán por incontables años, mucho de acierto/error. Algunos de los problemas que presentan los diseños actuales tienen su origen, fundamentalmente, en la ingeniería y, en comparación con las dificultades conceptuales de la física subyacente, son extremadamente graves y difíciles de resolver.

Existe un problema adicional no menor. En el proceso se producen neutrones de alta energía imposibles de frenar antes de que atraviesen las paredes del dispositivo. Ello convierte en radiactivas las estructuras, por lo que se hace necesario encontrar materiales de baja activación frente al intenso bombardeo neutrónico, amén de otras partículas que escapan del confinamiento.



Figura 1: Esquemas a escala que ilustran la evolución de los tamaños de los dispositivos de confinamiento magnético, los llamados “TOKAMAK” –acrónimo del ruso тороидальная камера с магнитными катушками (toroidal'naya kamera s magnitnymi katushkami, en español cámara toroidal con bobinas magnéticas)– El ITER se encuentra en estado de construcción y el DEMO, en etapa de proyecto, se supone será el primer reactor comercial.


Este bombardeo no solo induce radiactividad, sino que cambia las propiedades físico-químicas por las que fueron elegidos tales materiales (resistencia a las altas temperaturas, resistencia a las grandes tensiones mecánicas, etc.). En el confinamiento magnético, debido a los intensísimos campos, las estructuras estarán sometidas a enormes tensiones mecánicas y aceptarán mal las pérdidas de sus propiedades, eso por no hablar de la posible volatilización de parte de la cámara de confinamiento cada vez que se produce una disrupción, fenómeno que, a causa de inestabilidades, desvía toda la columna de plasma haciéndola impactar contra las paredes (cortocircuito), ¡y ello a temperaturas del orden de millones de grados Celsius! Por otra parte, las bobinas superconductoras, necesarias para conseguir elevados campos magnéticos, jamás se han empleado bajo el intenso flujo de neutrones que supondrá el funcionamiento del ITER (el prototipo casi comercial en fase de proyecto) y puede haber sorpresas nada agradables al respecto.

Aunque los materiales irradiados procedentes de la fusión son menos radiactivos que los correspondientes a un reactor de fisión y podrán ser manipulados sin peligro en cuestión de un par de decenas de años, los defensores de la fisión atacaron fuerte y uno de sus argumentos consistía en decir que la fusión era igual de sucia y por el contrario mucho más cara. Hace unos 35 años, Lawrence Lidsky, profesor de Ingeniería Nuclear del MIT (Massachusetts Institute of Technology), publicó un artículo atacando la fusión, en la revista de esa institución “Technology Review”, del cual se hizo eco el Washington Post y terminó por dar la vuelta al mundo. Los titulares de los periódicos eran de este tenor: “La fusión no es posible”; “Se cree que la fusión termonuclear ha llegado a su fin”; “Se considera la fusión sencilla pero inútil”; “Un veterano de la fusión declara que los problemas a los que se enfrentan son irresolubles”... Los entusiastas de la fusión tampoco acertaban con los argumentos para rebatir el ataque.

Los razonamientos técnicos de Lidsky eran los siguientes:

a) los costes de construcción de un reactor de fusión serán siempre mayores que los correspondientes a un reactor de fisión de la misma potencia

b) los problemas de ingeniería serán mayores, empezando por la necesidad de evitar el bombardeo neutrónico de los materiales estructurales que deben soportar tensiones mecánicas hasta ahora inimaginables

c) aunque no sean muy graves, los accidentes provocarán en un reactor de fusión paros que harán no rentable económicamente una central de este tipo

d) los reactores de fusión serán enormes, complicados, caros y poco fiables

e) el uso de un reactor de fusión estará limitado a formar tándem con uno de fisión en el mejor de los escenarios.

En cualquier caso, la reacción política no se hizo esperar y Lidsky fue destituido de su cargo de director adjunto del Centro de Fusión del MIT. El encargado de rebatir sus manifestaciones fue Harold Furth, de Princeton, quien utilizó la batería de siempre. La justificación “estrella” consistió en decir: “Si los hermanos Wright no hubieran construido un primer aparato volador torpón, nunca se hubiera desarrollado la tecnología aeronáutica actual”, en una clara defensa de la forma de investigar en modo acierto/error. Evidente, pero también debemos reconocer que el método lo emplearon con prototipos pequeñitos. ¿Se imagina el lector a los hermanos Wright intentando hacer volar un primer modelo de la talla de un Jumbo?

De todo lo anterior se desprende que la mayor desventaja de la fusión controlada, frente a otras fuentes de energía quizás menos prometedoras pero sí más fáciles de manejar, incluida la fisión, reside en el factor económico. ¿Qué compañía arriesgará su capital en construir una planta de fusión que, en el mejor de los casos, funcionará a trompicones y producirá energía a un coste superior al de cualquier otro sistema? Primero se necesita un esfuerzo suplementario para simplificar la complejidad tecnológica de las máquinas actuales y minimizar su coste. Hoy día un reactor de fusión requiere el concurso de muchos países y, si fuera un sistema prometedor, más de una compañía eléctrica ya habría entrado en tales consorcios; no olvidemos que se postula como la energía más limpia, barata e inagotable de la historia presente y futura de la Humanidad.

Por otra parte, muchas organizaciones ecologistas ya han levantado la voz sobre la falacia de la inagotabilidad del combustible. Si la fusión del combustible mezcla Deuterio-Tritio ha sido inviable hasta hoy, más difícil será conseguir la fusión mediante la mezcla Deuterio-Deuterio. Como el Tritio es radiactivo y de corta vida media, no se encuentra en abundancia suficiente en la Naturaleza y hay que obtenerlo por bombardeo neutrónico del Litio6, por consiguiente, es el Litio el elemento que debe proveer de combustible a una planta termonuclear y su abundancia, aunque es 15 veces mayor que la del Uranio, no es ilimitada, sobre todo la del isótopo Litio6, el cual representa solo un 7 % del Litio natural. A ello se añade el problema del uso del radiactivo Tritio, susceptible de pasar al ciclo biológico del agua, y de los materiales, también radiactivos, que saldrán de las estructuras desechadas.

La fusión, por lo tanto, podría ser una gran mentira, como algunos la califican.

Supongamos que estamos en 2050 y los prototipos como el ITER han demostrado que la fusión es viable a un coste de, pongamos por caso, 8000 millones de euros por planta energética. Además, la Física del Plasma no ha proporcionado ninguna sorpresa nueva con relación a las inestabilidades, disrupciones, etc., y los reactores se han mostrado estables. El problema seguiría siendo el mismo que el actual en relación a las plantas de fisión. Una central de este estilo siempre será un generador de base, es decir, debe proporcionar energía eléctrica a la red a un ritmo constante y sin interrupciones imprevistas, pues su coste inicial hace que solamente sea rentable si está siempre operativa. Por otra parte, es muy probable que siempre se necesiten enormes cantidades de energía para reiniciar la ignición tras una parada, por consiguiente, desde el punto de vista del coste energético, una parada en fusión supone un problema mucho mayor que en fisión.

Hablemos del coste del combustible en el confinamiento magnético. Sin lugar a dudas es prácticamente despreciable frente a la inversión inicial en infraestructuras, pero esta es tan elevada, al nivel actual de conocimiento, que supera con creces los costes de otras fuentes de energía. Por esta razón muchos opinan que el tiempo y el dinero dedicado a la investigación de fusión deberían dedicarse a otras tecnologías energéticas que ya hubieran mostrado su viabilidad.

¿Es viable económicamente la fusión por láser? La respuesta, de momento, es negativa y, esta vez, aunque parezca mentira, por cuestiones de coste del combustible. Efectivamente la fabricación de los “perdigones” de combustible es hoy un proceso carísimo (véase la figura 2). El presupuesto de la Universidad de Rochester es de varios millones de dólares por 6 cápsulas de Deuterio-Tritio que se introducen en la cámara de irradiación para quemar en un año. Una máquina comercial necesitaría unas 90 000 de esas cápsulas por día. La pregunta es obvia: ¿es posible abaratar hasta extremos rentables la producción de esas cápsulas de D-T?



Figura 2: Proyecto NIF (National Ignition Facility) del Lawrence Livermore National Laboratory, California. 
Izquierda: Microcápsula de combustible (“perdigón” mezcla Deuterio-Tritio). 
Derecha: Cámara de irradiación en cuyo centro debe implotar la microcápsula al ser iluminada simultáneamente por los haces de un láser de 500 TW. En el centro de la parte superior puede verse a un operario en labores de mantenimiento.


Debemos pues concluir que el enfoque actual de un mundo basado únicamente en la energía de fusión no solo es poco realista, sino que en ningún caso es la panacea, ni energética, ni económica, ni política, ni social.

Rebecca Harme, del grupo de “Los Verdes” del Parlamento Europeo, solicitando en la Comisión de Industria que el esfuerzo se desvíe en otra dirección, ha asegurado: “En los próximos cincuenta años la fusión nuclear no va a luchar contra el cambio climático ni a garantizar la seguridad de nuestro suministro energético”. Hoy, en plena crisis económica, la opinión generalizada es que invertir 13 000 millones de euros en un proyecto a cincuenta años, del cual no tenemos asegurada la viabilidad, es descabellado. Claro que cabe preguntarse: ¿cuánto ha costado el rescate bancario, solo en España?; ¿cuál va a ser el resultado del mismo? Evidentemente se pueden hacer críticas a la fusión pero deben ser más serias y quizás provenir de ambientes más cualificados. Sin embargo, la respuesta desde el sector científico a estas críticas es siempre la misma, y siempre igual de tibia, se limita a afirmar que la seguridad intrínseca de esta forma de producir energía es suficiente pretexto como para intentar ganar la partida.

Afortunadamente hay voces discordantes más cualificadas que piensan, no que la fusión termonuclear controlada es un imposible, sino que el camino elegido, el ITER (iter es “camino” en latín), no es el correcto. Estas críticas provenientes de la comunidad científica del plasma son las más demoledoras, y no son recientes sino que incluso se remontan a los comienzos de la puesta en marcha de tokamaks como el TFTR americano y el JET europeo. El problema sobrevino cuando los demás dispositivos de confinamiento magnético fueron abandonados a favor de los tokamak, sin haber sido estudiados con la profundidad requerida ante una decisión de tal envergadura. Los primeros en caer en el olvido, pese a su simplicidad, fueron los espejos magnéticos y el laboratorio de Livermore, a comienzos de la década de los ochenta del pasado siglo, estaba a punto de inaugurar uno de esos dispositivos, también de un tamaño considerable, cuando pocas semanas antes recibió de la administración Reagan la orden de abandonar el proyecto en favor de la fusión por láser, con connotaciones más belicistas, relacionadas con el famoso proyecto conocido popularmente como “guerra de las galaxias”.

En definitiva, no se han dejado madurar las ideas, no se han hecho suficientes experimentos de laboratorio a pequeña escala. Se ha cercenado la investigación básica. Algunos países como España se han lanzado a gastar dinero en construir máquinas inservibles, cuando hubiera costado mucho menos tener a los científicos y técnicos preparados con estancias en los centros donde se cocían de verdad las grandes soluciones. El propio Bob Hirsch, defensor a ultranza de las grandes máquinas tokamak a comienzos de su carrera, “cuando era un joven con prisas”, –como dijo alguien–, en un discurso ante la Sociedad Nuclear Americana en 1985, atacó la idea del tokamak como inservible para los objetivos de la energía comercial de fusión. ¿Llevaría razón? Sus argumentos científicos terminaban con la idea de la inviabilidad a nivel comercial de un sistema que consistía en una complicada geometría, con anillos y más anillos abrazando una cámara de vacío a la que apenas se podía llegar ni con radiación electromagnética; “la industria preferirá una geometría sencilla”, afirmaba. Hirsch abogaba entonces por dispositivos más pequeños y manejables.

También hay voces que opinan que el problema reside en la falta de presupuesto. ¿Si se hubiera hecho el mismo esfuerzo por desarrollar la Física del Plasma como se ha hecho para encontrar “el color” de los quarks, sería hoy la fusión una realidad?  Es más, bastaría haber dedicado el mismo presupuesto a otros diseños que el dedicado al desarrollo del tokamak, quizás con eso hubiera sido suficiente para encontrar la solución.

Don Grove, antiguo colaborador de Spitzer, padre de los “stellarator” –otro diseño de confinamiento magnético para la fusión–, y a la sazón responsable del grupo de fusión de la Universidad de Princeton, se quejaba de lo que parecía evidente: cuánto menos práctico era un proyecto mayor apoyo recibía de los políticos, con tal de ganarle la carrera a algún “enemigo”. Erik Storm, líder de la fusión por láser, compartía el mismo pesimismo: “Creo que las soluciones a los problemas de la Humanidad pasan por descubrir el verdadero color de los quarks”, decía. Claro que, al fin y al cabo, la comunidad de fusión se pasaba la vida diciendo que ya estaba a punto de encontrar la energía más segura, inagotable y barata, pero sus proyectos eran tan caros, que era más rentable escurrir las últimas gotas de petróleo de los sitios más inaccesibles.

La última crítica conocida es más feroz, si cabe, y proviene de Jean Pierre Petit, exdirector de investigación del CNRS francés y gran especialista en Física del Plasma. Petit afirma que el problema fundamental reside en el propio comportamiento del plasma de un tokamak; las disrupciones no permitirán jamás que un dispositivo comercial llegue a funcionar. Estos “apagones” del gas ionizado, de consecuencias desastrosas, están muy lejos de evitarse y pueden aparecer en cualquier momento, basta una ligera inestabilidad desencadenada por unos cuantos átomos de impurezas mezclados con el combustible.

Es posible que el problema mayor del ITER provenga del empeño de los socios en no hacer un fondo común y designar un equipo de realización del proyecto. Cada país participante quiere hacer revertir su inversión en la industria propia. En palabras de Brumfiel periodista de la revista “Nature” que sigue el proceso de su construcción desde hace más de 10 años: “es como si uno pidiera bajo catálogo una serie de chapas y cientos de miles de tuercas y tornillos para construir en el jardín de su casa un Boeing 747”. Pero hay un par de detalles que todos olvidan: 1) en plena crisis no es difícil que alguna de las empresas adjudicatarias de parte del proyecto quiebre a la mitad o casi al final del camino, con el dinero gastado y la pieza a medio hacer; y 2) tras los muchos ajustes, hay piezas que nunca han sido especificadas en los catálogos, posiblemente hasta la hora de ensamblar el conjunto no se sepa cuáles son. Efectivamente, algunos países, como la India, empiezan a tener problemas para cumplir sus compromisos o para repartir los contratos entre las empresas subcontratantes.

En resumen, podemos afirmar que, por mucho tiempo, la fusión no será la protagonista del futuro energético de la Humanidad.


Julio Gutiérrez Muñoz
Doctor en Física
Catedrático de Universidad de Física Atómica, Molecular y Nuclear, jubilado.

miércoles, 8 de enero de 2020

TERTULIA FULBRIGHT: ENCUENTRO CON EL DR. JOSÉ MIGUEL GARCÍA MARTÍN

Tertulia Fulbright
Dr. José Miguel García Martín
"Nanomateriales para luchar contra
las infecciones y el cáncer"



Un par de textos muy recomendables de Dr. José Miguel García Martín:

Y yo quiero ser... Nanotecnólogo

Nanotecnología para la salud


jueves, 5 de diciembre de 2019

Breathless and dying on Mount Everest - Eduardo Garrido

Fenomenal artículo de
Eduardo Garrido

Breathless and dying on Mount Everest
THE LANCET
Respiratory Medicine


Abrupt exposure to the enormous 8848 m altitude of Mount Everest would cause loss of consciousness in less than 3 min, but a period of several weeks of progressive acclimatisation allows some humans to survive at such altitude. The functional limits of the body at such extreme hypoxia, especially in relation to lung function, alveolar and blood gases, or oxygen uptake, were established by the Operation Everest I, II, and III-Comex studies, in 1946, 1985, and 1997, respectively, which were done with the use of hypobaric chambers, and by the American Medical Research Expedition to Everest in 1981 and the British Caudwell Xtreme Everest Expedition in 2007, both carried out on Mt Everest itself. During the weather window that occurs on the Himalayas in mid-spring, when Mt Everest is usually climbed with...





Climbers stuck in a long queue on the southeast upper ridge (8800 m) of Mt Everest in May, 2019
Copyright © 2019 Reproduced with permission from Nirmal Purja, Project Possible