jueves, 5 de diciembre de 2019

Breathless and dying on Mount Everest - Eduardo Garrido

Fenomenal artículo de
Eduardo Garrido

Breathless and dying on Mount Everest
THE LANCET
Respiratory Medicine


Abrupt exposure to the enormous 8848 m altitude of Mount Everest would cause loss of consciousness in less than 3 min, but a period of several weeks of progressive acclimatisation allows some humans to survive at such altitude. The functional limits of the body at such extreme hypoxia, especially in relation to lung function, alveolar and blood gases, or oxygen uptake, were established by the Operation Everest I, II, and III-Comex studies, in 1946, 1985, and 1997, respectively, which were done with the use of hypobaric chambers, and by the American Medical Research Expedition to Everest in 1981 and the British Caudwell Xtreme Everest Expedition in 2007, both carried out on Mt Everest itself. During the weather window that occurs on the Himalayas in mid-spring, when Mt Everest is usually climbed with...





Climbers stuck in a long queue on the southeast upper ridge (8800 m) of Mt Everest in May, 2019
Copyright © 2019 Reproduced with permission from Nirmal Purja, Project Possible


martes, 26 de noviembre de 2019

CURSO COMPUTACION CUANTICA

Eduardo Sáenz de Cabezón

Primera parte
(Instituto de Matemáticas de la UNAM)



Segunda parte
(Instituto de Matemáticas de la UNAM)


domingo, 24 de noviembre de 2019

La fisión nuclear - Ignacio Durán Escribano

La fisión nuclear ¿sigue avanzando o tiene fecha de caducidad?
(Por Ignacio Durán Escribano)

(Noviembre 2016)


La respuesta rápida a esta cuestión no puede ser otra que la de constatar su avance y pronosticarle una centenaria trayectoria futura. Pero es cierto que se trata de un tema controvertido y merece pues un análisis más detallado.

No es este el lugar de discutir acerca de los motivos que puedan tener – que tienen – los detractores de la energía nuclear y merecería un artículo separado discutir acerca del riesgo real y de la percepción que de ese riesgo tiene la población de cada país. Voy a asumir que la controversia existe, pero partiendo del hecho constatable de que a día de hoy hay 448 reactores operativos, 58 en construcción, 167 programados y 345 en fase de estudio, según los datos del Nuclear Fuel Report de la World Nuclear Association. De estos números hay que deducir los 40 reactores japoneses que permanecen parados desde el accidente de Fukushima. Desde 1996, 70 reactores han sido definitivamente cerrados y solo 76 nuevos han sido puestos en funcionamiento, pero la energía eléctrica generada se ha prácticamente duplicado, debido a que muchos de los reactores en operación se han renovado, alargando su vida útil y aumentando su eficiencia energética, además de que la mayor parte de los retirados tenían una potencia nominal entorno a los 600 MWe mientras que los nuevamente construidos tienen una potencia media cercana a los 1000 MWe y ciclos de funcionamiento más extendidos. Es decir, una visión objetiva del estado actual es la de un sector en crecimiento, con la previsión de que para 2035 se cierren 132 reactores mientras que se estima que se pondrán en funcionamiento 290 nuevos.

¿Qué hay de nuevo en la tecnología nuclear de fisión y como se adapta a la evolución social? No veo yo que se pueda hablar de grandes cambios en los diseños básicos, si bien hay un consorcio, establecido al más alto nivel internacional, para el estudio y desarrollo de nuevas tecnologías, que se engloba bajo el título de GEN IV (cuarta generación). En el momento actual la actividad principal se centra, sin embargo, en el desarrollo de la denominada tercera generación, a la que se le añaden términos para reforzar el concepto de avance continuo en los resultados obtenidos. Así se habla de GEN III+ o se antepone el adjetivo de Advanced al mencionar la tecnología empleada y se observa la creciente atención, tanto por la reducción de costes como por el aumento de la seguridad de las instalaciones. Estos reactores tienen mejor eficiencia térmica que los construidos hace veinte años y alargan los tiempos de funcionamiento entre paradas programadas, con el consiguiente aumento de la energía generada año tras año. Hay que decir aquí que estos reactores de nueva generación nacen con tiempos de vida útil de sesenta años, no estando excluido que puedan luego reformarse para duplicar ese valor.

Tres han sido los hitos que han marcado la orientación de los nuevos diseños, el trágico accidente de Chernobil, los acuerdos de Kioto sobre el cambio climático y el accidente de Fukushima tras sufrir el impacto de un extraordinario tsunami. Los dos graves accidentes tendrían, supuestamente, un impacto negativo en el desarrollo de la energía nuclear. Pero no ha sido así y tras cada uno de estos sucesos se observa un parón en la construcción de nuevos reactores, seguido unos años después de un repunte, sobre la base de diseños orientados, tanto hacia la mayor seguridad como hacia el mejor rendimiento energético. Los acuerdos derivados de la toma de conciencia del calentamiento global conducen a un replanteamiento del mercado de la energía y la racionalización que de él se deriva ha dejado clara la necesidad de definir lo que viene llamándose el mix energético, en el que la energía nuclear tendría asignado un porcentaje en torno al 20%, según los distintos escenarios contemplados. El cambio fundamental a lo largo de estos años ha sido el pasar de un planteamiento local y puramente económico a otro basado en la seguridad del suministro eléctrico, con la mínima producción de CO2 y el mínimo riesgo para la población, a escala mundial.

Entre tanto, la incorporación al primer nivel de desarrollo de las grandes potencias orientales aporta, no solo un incremento en la demanda de energía sino también una oferta de su capacidad constructiva en el sector nuclear. Esto ha provocado la formación de grandes consorcios industriales internacionales, liderados por Westinghouse Electric (que pasa, de estar controlada por capital británico a estarlo por Toshiba y participada con otras compañías orientales) y GEH (General Electric + Hitachi), junto con las grandes empresas nacionalizadas de Francia, Rusia o Korea. Este movimiento industrial y financiero ha propiciado que el diseño de los nuevos reactores se haga de forma modular, es decir, que su construcción sea hecha por partes, en distintas empresas e incluso en distintos países y, de esta forma, un número creciente de empresas de muy distintos lugares pueden licitar a la hora de formarse cada uno de los consorcios adaptado a cada planta concreta. El resultado de esta dinámica industrial es una reducción de los costes y de los tiempos de construcción y, al mismo tiempo, desaparece la total dependencia que antes existía de las tres grandes potencias del sector, USA, Rusia y Francia.

El planteamiento económico de la energía nuclear condujo al diseño de reactores cada vez más grandes, con una repercusión directa sobre el elevado coste financiero que conllevan los macroproyectos. Esto entraña compromisos políticos, no siempre fáciles de asumir en una sociedad cuya percepción del riesgo asociado a las centrales nucleares es muy desfavorable. La nueva conciencia de la necesidad de contribuir al mix energético y el incremento de la seguridad de los nuevos diseños, ha hecho cambiar los planteamientos, lo que se manifiesta más claramente en los países en vías de un fuerte desarrollo socio-económico, obligados a tomar decisiones sin excesivas concesiones a la presión mediática. Vemos así que, frente a la tímida actividad en Europa (4) y USA (4), la mayor parte de los reactores en construcción están en China (20), Rusia (7), India (5), Pakistan (2), los Emiratos Àrabes (4) y Korea (3).

A nivel de la seguridad, los accidentes de Chernobil y Fukushima, pero sobre todo este último, han conducido a una revisión de los procedimientos, con un papel creciente de la Agencia Internacional de Viena (la IAEA). Los distintos agentes involucrados en la construcción de los nuevos reactores tienen ahora especificaciones y controles más rigurosos, no solo por las agencias de seguridad nacionales sino también por la propia IAEA, lo que ha llevado a una mayor racionalización del proceso. Todos los nuevos diseños incluyen la redundancia de los sistemas críticos, la extrema protección frente a catástrofes naturales y ataques terroristas y, por encima, lo que se denomina seguridad pasiva. Es decir, la tecnología empleada tiene que ser tal, que el eventual fallo de los sistemas de refrigeración no conduzca a la fusión del núcleo del reactor, permitiendo plazos de intervención razonables y suficientes, como para proceder a una parada segura. Todos los diseños actuales de GEN III que llevan la etiqueta Advanced cumplen con estos requisitos.

Dentro de las críticas que suelen hacerse a la tecnología nuclear están las dudas acerca de las reservas de uranio y torio, primero por su eventual escasez y segundo por la dependencia que se crea de los países consumidores respecto a los países productores. El análisis de la seguridad del suministro del combustible juega un papel muy importante a la hora de asumir el esfuerzo financiero que conlleva la construcción de una nueva planta de energía nuclear. Conduce también a un estado de ansiedad social, al pensar en el efecto negativo que sobre la economía de un país puedan tener los incrementos de los precios del combustible en el mercado internacional. Esta duda llegó a ser muy razonable y las respuestas no fueron muy favorables durante las pasadas décadas, al estimarse que las reservas de uranio y torio solo podrían garantizar precios estables durante apenas medio siglo. A corto plazo, esta dinámica cambió con el fin de la guerra fría y la introducción en el mercado de las reservas de plutonio y uranio procedentes de la actividad militar, por parte, fundamentalmente, de Rusia y USA. Por otra parte, a medio y largo plazo, resultará rentable el reprocesado del combustible usado, lo que conduce a pensar que las reservas disponibles permitan desbordar, al menos, el horizonte de varios siglos. Para entender esta afirmación hay que considerar que en la generalidad de los reactores funcionando actualmente, se aprovecha menos del 1% del potencial combustible, debido al aumento progresivo de la proporción de isótopos no fisibles, que capturan los neutrones y reducen la eficiencia de la reacción en cadena. En el ciclo actualmente normal del combustible, el aumento del stock de los actínidos de vida media larga (miles de años) plantea un grave problema, puesto que los residuos así generados tienen que ser almacenados en silos seguros y a la larga determinan el límite de la utilización de este tipo de reactores nucleares. No obstante, en los llamados reactores rápidos los neutrones no son moderados y alcanzan energía suficiente como para hacer fisionar todos los actínidos, produciéndose así la transmutación de estos isótopos que no son fisibles por los neutrones lentos. Estos reactores se construyen hoy en día de forma que son económicamente rentables, lo que permite afirmar que el coste total del combustible de fisión nuclear, incluyendo los reprocesamientos y la quema de los actínidos, seguirá siendo competitivo con las fuentes de energía renovables durante mucho tiempo.

En un resumen de lo aquí expuesto, se podría decir que la presión social contra los reactores nucleares de fisión hace que su uso se desplace hacia los países con fuerte crecimiento de la demanda energética, principalmente los orientales; que el alto grado de seguridad y la fiabilidad de los diseños hace previsible su funcionamiento por más de sesenta años; que los costes y tiempos de construcción disminuyen y su mayor eficiencia y vida útil reducen el coste de mantenimiento; que el reprocesamiento del combustible hace que se aprovechen unas veinte veces mejor los recursos actuales y que, finalmente, la construcción de reactores rápidos permite quemar los residuos de larga vida media, de forma rentable. Todo ello hace pensar que estamos hablando de una tecnología que va a convivir con las renovables durante, al menos, lo que queda de siglo.

En lo que respecta al mix energético ideal, no podría yo decir, a partir de lo que he leído, que el peso de la energía nuclear sea necesariamente el 20%. Hay un argumento en favor de que nunca dejase de ser mucho menor de ese valor, basado en la intermitencia de la mayor parte de las energías renovables y en el encarecimiento de la red eléctrica si hubiese que recurrir a un almacenamiento de la electricidad en grandes proporciones. Hay también consideraciones de orden económico, pero están basadas en diferentes escenarios del desarrollo social a nivel global y esto hace que las horquillas de las previsiones no conduzcan a estimaciones demasiado precisas. Si reducimos pues las previsiones a tiempos inferiores al medio siglo, vemos que la creciente implantación de las energías renovables – aun proyectando una tasa de crecimiento mayor que la actual – apenas cubrirá el aumento de la demanda de electrificación a nivel global. Es decir, si los componentes limpios (los que no producen CO2) del mix energético no crecen a una tasa mucho mayor que la demanda, la deseada reducción del efecto invernadero no se producirá en estos cincuenta años, porque se mantendrán prácticamente constantes las componentes sucias (las basadas en los combustibles orgánicos).

Permítaseme terminar con una consideración acerca de la necesidad de fomentar el desarrollo en las regiones más desfavorecidas. Dentro de la tecnología actual están desarrollándose proyectos de reactores englobados bajos las siglas SMR (Small Modular Reactors) basados en la experiencia acumulada en los submarinos nucleares, cuya seguridad y fiabilidad está fuera de toda duda. Estos SMR se construyen en origen, destinándose a su utilización “llave en mano” en lugares remotos, sin necesidad de intervención a nivel local. Están previstos para su instalación allá donde se requiera un aporte de energía, sea electrificación o producción de agua desalinizada, de forma rápida, adaptando el número de módulos a las necesidades coyunturales, o en lugares de difícil acceso, como islas o desiertos. Pues bien, este tipo de reactores está llamado a ser una herramienta fundamental en la ayuda al desarrollo del tercer mundo.


Ignacio Durán Escribano
Doctor en Física
Catedrático, Universidad de Santiago de Compostela.





viernes, 22 de noviembre de 2019

CONFERENCIA ÁLVARO DE RÚJULA

Un lujo, otro de los grandes.

Conferencia de Alvaro de Rújula  
'Aciertos, errores y dudas de Albert Einstein'


Fundación Ramón Areces

El 20 de noviembre de 2019 nos visitó Alvaro de Rújula, miembro de la Organización Europea para la Investigación Nuclear (CERN) y del Instituto de Física Teórica CSIC-Universidad Autónoma de Madrid. Habló de 'Aciertos, errores y dudas de Albert Einstein' en una conferencia organizada en colaboración con la Real Academia de Ciencias Exactas, Físicas y Naturales.

martes, 19 de noviembre de 2019

ESA Young Graduate Trainee 2019!



¡La ESA busca a más de cien interesados para su programa de formación para jóvenes graduados!


¡Solicita ya una plaza en el programa Young Graduate Trainee 2019!

miércoles, 30 de octubre de 2019

viernes, 27 de septiembre de 2019

CONFERENCIA IGNACIO CIRAC

Un auténtico lujo.


El 26 de septiembre de 2019, Juan Ignacio Cirac, director de la División de Teoría del Instituto Max Planck de Óptica Cuántica, dio una conferencia en la Fundación Ramón Areces, organizada con la Real Academia de Ciencias Exactas, Físicas y Naturales y la Real Sociedad Española de Física, con el título ‘Ordenadores cuánticos: cómo, cuándo y para qué’.

miércoles, 25 de septiembre de 2019

PRUEBA AUDIO (DISCULPAR LAS MOLESTIAS)

2.3
Título del texto aportado. (el que ponga el autor)
Una voz en la fuga cósmica.


Comenzaré por decir que tengo 54 años, así que algunas de las situaciones que voy a describir puede que les resulten extrañas a los jóvenes de esta época. Sin embargo, me atrevo a pensar que, aunque parezca que el mundo y los humanos han cambiado muchísimo desde la época en la que yo era una niña, en realidad lo que ha cambiado han sido más las formas que lo esencial. Seguimos teniendo deseos y sentimientos parecidos y, entre ellos, creo que hay uno muy poderoso, que es el de poder realizar una actividad profesional que trascienda el objetivo de ganar lo necesario para vivir dignamente y nos haga disfrutar a un nivel profundo. Entre los trabajos que ayudan a cumplir este deseo están aquellos que fomentan el desarrollo de nuestra creatividad, los que nos impulsan a pensar y a no repetir mecánicamente los procesos diseñados por otros. Aquí estaría el lugar de las artes, de la literatura, del diseño, y, por supuesto, también el de la ciencia1.
Sin embargo, yo no nací con la vocación de ser astrobióloga. Ni siquiera con la vocación de ser científica. De hecho, de niña, casi ni me planteaba lo que quería ser de mayor. Nací en un pueblo pequeño y allí pasé mi infancia. En ese lugar y en esa época, los hombres iban al campo y las mujeres, con la honrosa excepción de las maestras, no trabajaban fuera de la casa. Si me hubieran preguntado qué quería ser de mayor, habría dicho primero que ama de casa y luego, si necesitaba trabajar, pues maestra. Eso era lo que se esperaba de mí y yo no me cuestionaba que pudiera ser de otra manera. En esa época disfrutaba mucho de la naturaleza, pero no me planteaba demasiadas preguntas sobre el mundo que me rodeaba. Lo que sí que me llamaba mucho la atención era que los médicos pudieran curar las enfermedades. Que hubiera pastillas o jarabes capaces de corregir lo que funcionaba mal en las personas era algo que me fascinaba. No me asombraba tanto que el enfermo se curara, sino el milagro que hacían esas sustancias dentro de su cuerpo. Supongo que esa fue mi primera inquietud como investigadora, que en algún momento confundí con una vocación médica que ahora veo claro que no tenía.
Unos pocos años más tarde, llegué a Madrid para hacer el bachillerato2, que normalmente se cursaba entre los 14 y los 18 años. Entonces fue cuando comenzaron a perfilarse los intereses que han marcado mi vida. Concretamente, recuerdo una clase de química en la que la profesora nos dijo algo que puede parecer obvio, pero que a mí entonces me supuso una revelación sorprendente y es que los seres vivos y los no vivos estamos hechos de los mismos elementos, que no hay nada mágico en la materia viva, más allá de la diferente organización de esos elementos. A partir de ese momento comencé a plantearme preguntas que nunca antes me había hecho: ¿Qué clase de “programa” puede organizar la materia para que los seres vivos puedan realizar todas esas funciones que los diferencian tan claramente de los no vivos? ¿Por qué algunos seres vivos son capaces de dividirse y poco más mientras que otros son, incluso, capaces de pensar y reflexionar sobre sus propios pensamientos? ¿Por qué hay seres vivos tan distintos cuando, a nivel molecular, todos ellos se parecen tanto? Todos tienen proteínas, tienen ácidos nucleicos, y, sin embargo, con el mismo material ¡cuántas diferencias pueden surgir! Poco a poco, me di cuenta de que quería conocer más y más sobre este tema: ¿Cómo surgió la vida? ¿Cómo se dio ese paso de la química a la biología? ¿Cómo fue aumentando la complejidad en biología? ¿Cuáles son los mecanismos que han permitido que, a partir de la primera célula viva, surja toda la diversidad biológica que existe actualmente? Así, dejé de querer ser maestra y empecé a querer ser bióloga. Quería saber más sobre la vida, sobre sus orígenes, sobre su evolución…  En último caso, pensé que podría ser profesora de biología, y así contentaba a todos, a mi familia que quería que fuera maestra y a mí misma, que me veía bióloga. Pero lo que sucedió, mientras estudiaba la carrera de Biología, es que me di cuenta de que quería hacer algo más que transmitir los conocimientos que yo aprendía. Enseñar me gustaba, no lo voy a negar, pero además, yo quería generar conocimiento. Y entendí que para eso no me quedaba otra opción que la de salirme del camino marcado, ponerme la bata blanca y meterme en un laboratorio. Podéis pensar que tampoco me salí mucho del camino, y tenéis razón. Pero también es cierto que esa decisión supuso cierto coraje, al renunciar a vivir la vida que los demás me aconsejaban, iniciando en cambio mi propia ruta. Y eso no siempre es fácil.

Fig.1. Recreación sobre el origen de la vida en el Universo.

(Crédito: NASA / Jenny Mottar )

Cuando acabé la carrera me empeñé en buscar un laboratorio en el cual aprender el método científico y aplicarlo a un tema de investigación concreto. Tuve mucha suerte, obtuve una beca para realizar un doctorado en el Centro de Biología Molecular Severo Ochoa. El tema asignado para mi tesis no se parecía mucho a lo que eran mis intereses más profundos, pero no me importó. La verdad es que en los cinco años de mi carrera, jamás había oído la palabra Astrobiología y yo no tenía muy claro dónde dirigirme para investigar en ese campo. Sin embargo, el simple hecho de poder  experimentar cómo era el trabajo científico durante los cuatro años que suele durar un doctorado, ya me parecía un gran logro. Y lo cierto es que, cuando uno se mete en un tema e intenta aportar en él lo mejor de sí mismo, te acaba gustando y yo no fui una excepción en esto. Pero a mí me seguían interesando las cuestiones que ya he comentado y me iban surgiendo otras nuevas: ¿Podría haber vida en otros planetas del sistema solar o incluso fuera de él? ¿La vida tendría que estar basada necesariamente en ácidos nucleicos y proteínas? ¿Podría haber otras moléculas que almacenaran la información genética? ¿Las funciones biológicas tienen que ser necesariamente llevadas a cabo por las proteínas? Y así empecé a darme cuenta de que tenemos muy claro lo que es la vida, pero eso solo es cuando no nos salimos de los límites de lo conocido. En cambio, no tenemos ni idea de cómo podría ser la vida en otro planeta,  ni siquiera de si seríamos capaces de reconocerla.  Y así, dándole vuelta a esas cuestiones, un día mirando el periódico me entero de que están buscando científicos para un nuevo centro de investigación llamado “Centro de Astrobiología”, que se va a dedicar al estudio del origen y evolución de la vida en el Universo. ¡Casi no me lo podía creer! Y menos aún me creía que mi currículum [1] pudiera interesar en un centro como ese, que decían que estaba asociado a la NASA. Reconozco que necesité un pequeño empujón de algunas personas para animarme a presentar una solicitud. Cómo no tenía nada que perder, decidí que, en lugar de escribir un currículum que resaltara mis méritos académicos y profesionales, lo que haría sería describir mi pasión. Hablé sobre las preguntas que me habían motivado a estudiar biología, sobre mis intereses, sobre mi motivación a adentrarme en nuevos terrenos. No dije “quiero ser astrobióloga”, pero lo que describí se parecía mucho a eso. El final es feliz, me contrataron en el Centro de Astrobiología…  ¡y aquí sigo! Mi trabajo consiste en realizar estudios de evolución experimental, para lo cual trabajo con virus y microorganismos.  Los experimentos que realizamos en mi grupo, básicamente consisten en propagar una población ancestral, que tenemos bien caracterizada, en ciertas condiciones que imponemos y controlamos nosotros. Con el paso del tiempo, se genera una población evolucionada, que analizamos y comparamos con la ancestral. De este modo, intentamos no solo encontrar cómo los seres vivos se adaptan a condiciones concretas, sino también extraer conclusiones generales sobre el proceso evolutivo.
Y sigo también con la pasión de enseñar, tanto en el ámbito académico como fuera de él. Creo que la gente quiere saber sobre ciencia, quiere entender el mundo que les rodea y, si los científicos podemos ayudarles, en cierto modo estamos obligados a hacerlo. A fin de cuentas, es la sociedad, quien con sus impuestos, paga nuestras investigaciones [2]. A día de hoy, no sé qué es lo que me hace más feliz si el trabajo científico o el trabajo de divulgación. La divulgación tiene un lado humano que es muy gratificante y que no siempre encuentro en el trabajo puramente científico, así que mi aspiración es seguir haciendo ambas cosas durante todo el tiempo que pueda y los demás me lo permitan.

Notas:
1 Las notas irán numeradas y al final del texto de cada aportación.
2

Referencias:
[1] Las referencias irán numeradas y al final del texto de cada aportación.
[2]

Bibliografía:
Irá al final del texto de cada aportación. Intentaremos utilizar el siguiente formato (ejemplos):
(1) S. Carlip, 2014, Challenges for Emergent Gravity, Stud. Hist. Phil. Sci. B 46, 200 doi:10.1016/j.shpsb.2012.11.002 [arXiv:1001.4965 [hep-th]].
(2) S. Weinberg, 1972, Gravitation and Cosmology, New York, J. Wiley & Son.

Ester Lázaro Lázaro. (Nombre del autor)
Doctora en Ciencias Biológicas.  (Titulación del autor)
Investigadora científica, Departamento de Evolución Molecular del
Centro de Astrobiología (CSIC-INTA), Madrid. (Filiación del autor)

CONFERENCIAS CSIC

UNA GRAN OPORTUNIDAD

domingo, 1 de septiembre de 2019

Neutrinos - Alberto Casas

¿Qué son los neutrinos?
(Por Alberto Casas)



Los neutrinos son partículas fascinantes que ostentan varios «records». Por ejemplo, son las partículas de materia más ligeras que se conocen. Son también, por lo que sabemos, las partículas de materia más abundantes del universo, solo superadas en número por las partículas de luz, los fotones. Y son las partículas conocidas más difíciles de detectar, ya que interaccionan muy poco con la materia, razón por la cual se tardó mucho en descubrirlas, a pesar de su abundancia. Pensemos que los neutrinos atraviesan la Tierra sin inmutarse (y lo mismo harían con muchos millones de Tierras puestas en hilera). Todos estos records pueden servir para otorgar a los neutrinos el título de "partículas más escurridizas". Pero ¿por qué existen los neutrinos y a qué se deben sus enigmáticas propiedades? Antes de profundizar en ello, hagamos un poco de historia.

La existencia de los neutrinos fue predicha por el gran físico austriaco Wolfgang Pauli en 1930. Pauli observó que en la desintegración de ciertos núcleos radiactivos se producía la misteriosa desaparición de una pequeña cantidad de energía, contradiciendo aparentemente el principio de conservación de la energía. Para resolver el problema, Pauli propuso que, en esas desintegraciones, además de los productos de la desintegración visibles, se producía una partícula indetectable y desconocida que se llevaba la energía que faltaba. En 1934 Fermi bautizó la partícula con el nombre de neutrino. Y hubo que esperar hasta 1956 para que fuera detectada por vez primera.

Con el paso de los años hemos aprendido mucho acerca de los neutrinos, aunque aún quedan aspectos esenciales por aclarar. Los neutrinos, que se suelen denotar por la letra griega n ("nu"), son partículas sin carga eléctrica. Su única interacción conocida, aparte de la gravitatoria, es la llamada interacción débil (ver capítulo 46). Existen tres tipos de neutrinos, llamados neutrino electrónico (ne), neutrino muónico (νμ) y neutrino tauónico (ντ). Estas denominaciones hacen referencia a la partícula cargada (electrón, muón o tau) con la que establecen interacciones. El último neutrino en ser detectado fue el tauónico, ντ, en el año 2000; si bien su existencia ya había sido puesta de manifiesto en los años 70. Se podría pensar que puede haber otras especies de neutrinos aún por descubrir, pero no es así. A partir de resultados de aceleradores de partículas se han reunido pruebas convincentes de que no hay más tipos de neutrinos. Mejor dicho, si los hubiera, deberían ser radicalmente distintos de los conocidos.

Los tres tipos de neutrinos son muy ligeros. De hecho, hasta 1998 no había pruebas de que tuvieran masa. Desde entonces sabemos que la tienen, pero no sabemos cuál es, solo ciertos límites entre los que esta tiene que encontrarse. Concretamente, el neutrino más pesado ha de ser entre un millón y cien millones de veces más ligero que el electrón (la siguiente partícula más ligera).

Hablemos un poco de las fuentes de neutrinos en la naturaleza. La mayor parte de los que llegan a la Tierra provienen del Sol, y en cantidades extraordinarias. Ahora mismo usted está siendo atravesado/a, sin notarlo, por cientos de billones de estos neutrinos por segundo. Los neutrinos solares, que no se detectaron hasta 1968, se producen en los procesos de fusión nuclear que tienen lugar en el interior de nuestra estrella. Dichos procesos son complicados, pero en definitiva lo que hacen es convertir protones (o sea núcleos de hidrógeno) en núcleos de helio (formados por dos protones y dos neutrones). Esquemáticamente, por cada cuatro protones se produce un núcleo de helio más dos positrones (electrones positivos), dos neutrinos electrónicos y radiación electromagnética. La radiación producida es la fuente de la luz y el calor que nos llega del Sol. Curiosamente, cada fotón de luz generado tarda cientos de miles de años en salir del Sol, ya que sigue una trayectoria errática al colisionar con las partículas cargadas que encuentra en su camino (protones, núcleos de helio, electrones, ...). Si el horno nuclear de fusión, que es en definitiva el corazón del Sol, se apagara, tardaríamos esos cientos de miles años en notarlo. Sin embargo, los neutrinos escapan instantáneamente del Sol, ya que apenas interaccionan con nada en su camino.  Y es gracias a ellos que sabemos que el interior del Sol está a pleno funcionamiento.

Los neutrinos se producen también copiosamente en las explosiones de estrellas (supernovas), y están presentes en los rayos cósmicos que llegan a la Tierra desde el espacio exterior. Por otro lado, son emitidos por todos los núcleos radiactivos que experimentan "desintegración beta" (emisión de un electrón), y se generan asimismo, en cantidades enormes, en las centrales nucleares. Estos últimos escapan de la central nuclear sin problemas pero no son peligrosos, ya que nos atraviesan sin producir el menor efecto. Finalmente, los neutrinos fueron producidos en cantidades extraordinarias al comienzo del universo, en los primeros segundos después del Big Bang. Esos neutrinos primigenios son de hecho los más abundantes en el universo. Sin embargo, son tan poco energéticos que aún no han podido ser detectados. Su descubrimiento es difícil y supondría una gran noticia ya que nos proporcionarían información directa de los primeros instantes tras la gran explosión.

Hasta ahora hemos descrito las propiedades más llamativas de los neutrinos. Pero ¿por qué son así? Para atacar esta cuestión conviene explicar cómo encajan los neutrinos dentro del llamado Modelo Estándar (ME) de la física de partículas, que es el esquema teórico del que disponemos para describir la fenomenología de las partículas elementales (hasta ahora con gran éxito).

En primer lugar, hay que decir que, hasta donde sabemos, los neutrinos son partículas verdaderamente elementales, o sea, no están compuestas de otras partículas. Solo 12 partículas de materia forman este grupo selecto. El protón y neutrón (los habitantes de los núcleos atómicos) no pertenecen a este grupo, ya que están compuestos de otras partículas llamadas quarks. Un protón esta hecho de dos quarks de tipo u (up) y un quark de tipo d (down). Podemos escribir p=uud. De la misma forma, la composición de un neutrón es n=udd. Pues bien, el neutrino electrónico, νe , junto al electrón, e,  y los quarks u y d, forman la llamada primera familia de partículas elementales (o familia del electrón):

                          νe                              u

                          e                              d

Existen otras dos familias de partículas elementales, totalmente análogas a la primera: la familia del muón (μ) y la del tau (τ); de forma que en total tenemos las 12 partículas mencionadas. El muón y el tau son prácticamente idénticos al electrón en todas sus propiedades, excepto en su masa: el muón es unas 200 veces más pesado que el electrón, y el tau unas 3.500. Cada uno tiene su familia completa, formada por un neutrino (νμ y ντ, respectivamente) y una pareja de quarks (c, s para el muón, y t, b para el tau). De hecho, cada familia es una réplica casi exacta de la anterior, excepto que las masas de sus partículas son mayores. Nadie sabe por qué la naturaleza se presenta en esta estructura de tres familias con una  jerarquía de masas. El ME no lo explica, sino que parte de este hecho. En ese sentido, el por qué de la existencia de los neutrinos es un misterio, tan grande como la existencia de cualquier otra partícula elemental. Sin embargo, hay que decir que, dada la existencia del electrón y sus interacciones débiles, la estructura matemática del ME exige la existencia de una partícula con las características del neutrino electrónico, νe. Y lo mismo sucede para las otras dos especies de neutrinos, νμ y ντ. Así que, en cierto modo, la teoría explica la existencia de los neutrinos y algunas de sus características, como su ausencia de carga eléctrica y sus interacciones débiles. ¿Y su masa? ¿Por qué es tan pequeña?

Desde el punto de vista teórico el origen y la pequeñez de la masa de los neutrinos es quizá la cuestión más interesante acerca de ellos, y está aún sin resolver, aunque hay modelos teóricos muy interesantes que podrían explicarla. De entrada hay que decir que el ME no da ninguna pista sobre las masas de los neutrinos. De hecho, según la formulación original de esta teoría los neutrinos deberían ser exactamente partículas sin masa, debido a la conservación de una cantidad llamada número leptónico (parecida en cierto modo a la conservación de la carga eléctrica). Sin embargo, desde 1998 sabemos que los neutrinos tienen masa, lo que obliga a una reformulación del ME, lo cual es de por sí muy interesante. En realidad, no es difícil extender el esquema teórico del ME de forma que, incluso manteniendo la conservación del número leptónico, las masas de los neutrinos sean distintas de cero. Pero entonces se plantea el problema de por qué son tan excepcionalmente pequeñas. Parece lógico pensar que debe haber alguna razón teórica detrás de esa pequeñez tan extrema.

Una forma alternativa de pensar es suponer que el ME es una teoría efectiva, válida solo hasta una cierta energía, digamos L, muy por encima de las energías accesibles en los aceleradores de partículas más potentes. Si la teoría completa, que está más allá del ME, viola la conservación del número leptónico, entonces los neutrinos pueden tener masa. Cuanto más grande sea L, más pequeña será la masa de los neutrinos (ya que los efectos de dicha violación están más lejanos). Los cálculos indican que si L » 1014 veces la masa de un protón, entonces la masa de los neutrinos estaría de forma natural en el rango observado. Si este esquema es correcto, la extrema pequeñez de las masas de los neutrinos nos está informando de física más allá del ME, y sugiriendo algunas de sus características: la no-conservación del número leptónico y la gran escala de energías a la que se encuentra. Para comprobar este esquema, hay que verificar experimentalmente que los neutrinos violan la conservación del número leptónico, algo que se está intentando en experimentos que buscan la denominada desintegración doble-beta de ciertos núcleos atómicos (todavía sin éxito). Así que, si este argumento es correcto, los neutrinos podrían ser los mensajeros privilegiados de la física fundamental que se encuentra a altísimas energías, inaccesible por cualquier otro procedimiento.

Para terminar, vamos a discutir un fenómeno extraordinario, que está en el corazón de todo lo que hemos aprendido sobre los neutrinos en los últimos años: las oscilaciones de neutrinos. Como hemos explicado, existen tres tipos de neutrinos: νe, νμ y ντ.  En la jerga de los físicos, estas especies se denominan "sabores" de los neutrinos. Sin embargo los neutrinos físicos, que tienen una masa determinada (aunque aún desconocida), no se corresponden con estos tres sabores, sino que son una mezcla de ellos. Este es un concepto difícil, que entronca con los postulados de la mecánica cuántica, según los cuales una partícula puede estar en una combinación de estados. Imaginemos que tenemos tres botellas llenas de zumo de naranja, de limón y de fresa, respectivamente. Estas botellas representan los tres neutrinos νe,  νμ y ντ.  Ahora tomamos tres botellas vacías y las llenamos con las tres anteriores pero mezclando los zumos. Estas nuevas botellas, llenas de tres "cócteles" distintos representarían los neutrinos con masa bien determinada, que se suelen denotar  ν1,  ν2 y ν3. Estos últimos son los que permanecen estables mientras se propagan, mientras que los otros van cambiando de naturaleza (un resultado de la mecánica cuántica). Esto significa que si creamos un neutrino electrónico, νe, por ejemplo en el interior del Sol, al cabo de un tiempo existirá una cierta probabilidad de que al detectar dicho neutrino nos encontremos que se ha transformado en νμ o ντ. Para que este fenómeno se dé, es necesario que los neutrinos tengan masas y que estas sean diferentes entre sí. Este es el fenómeno de oscilaciones de neutrinos que fue observado por vez primera en los neutrinos provenientes del Sol y en los que se crean en la atmósfera como resultado del impacto de rayos cósmicos ("neutrinos atmosféricos"). De esta forma se han podido determinar las diferencias de masa entre los neutrinos (aunque no su masa absoluta) y los llamados "ángulos de mezcla", que determinan como se mezclan los neutrinos (el contenido de los cócteles anteriores).

En definitiva, sabemos mucho acerca de estas partículas singulares, pero aún quedan cosas trascendentales por entender, las cuales podrían darnos pistas cruciales sobre la teoría última de la naturaleza.


Alberto Casas
Doctor en Física.
Profesor  de Investigación, Instituto de Física Teórica CSIC.


domingo, 4 de agosto de 2019

Rayos cósmicos - Juan Antonio Aguilar Sánchez

¿Qué son los rayos cósmicos?
(Por Juan Antonio Aguilar Sánchez)



Para explicar los rayos cósmicos hace falta remontarse unos 100 años, al año 1912 cuando Victor Hess finalizaba una serie de viajes en globo aerostático donde equipado con un electroscopio midió cómo la ionización en la atmósfera aumentaba conforme se alejaba de la superficie de la Tierra. El origen de dicha ionización debía ser algún tipo de radiación, y dado que aumentaba con la altura, el origen no podía ser terrestre. En otras palabras, existía, y existe, una radiación proveniente del espacio exterior. Por este hito, a Victor Hess se le conoce como el descubridor de los rayos cósmicos. Sin embargo sería injusto otorgar el mérito solo a Hess dado que muchos físicos antes que él ya habían iniciado el camino que culminaría con sus famosos viajes en globo: Theodor Wulf, Karl Bergwitzy, Domenico Pacini entre otros, fundaron los cimientos de una de las ramas de la física de partículas que dominaría el campo durante los siguientes 40 años hasta el advenimiento de los primero aceleradores de partículas en los inicios de los años 1950.

En los tiempos de su descubrimiento, los rayos cósmicos encerraban numerosos misterios: desde su origen hasta su propia identidad. ¿Qué eran en realidad esos rayos ionizantes? Durante los años 1920 Bruno Rossi y Robert Millikan protagonizaron un animado debate sobre la naturaleza de los rayos cósmicos. Millikan propuso que los rayos cósmicos eran “ultra”-rayos gamma, es decir fotones de muy alta energía creados en la fusión de hidrógeno en el espacio. Las medidas de Rossi, que mostraban una asimetría Este-Oeste en la intensidad de los rayos cósmicos, sugerían en cambio que los rayos cósmicos debían ser partículas con carga eléctrica desmontando las teorías de Millikan. Es famosa la anécdota en la que Rossi, durante la charla introductoria en una conferencia de Roma dijo:

“Claramente Millikan está resentido porque un joven como yo haya hecho pedazos su querida teoría, tanto que desde ese momento se niega a reconocer que existo.”

Cien años después sabemos que en efecto Rossi tenía razón (para el descontento de Millikan). En su mayoría, un 90%, los rayos cósmicos son protones y otros núcleos pesados. La proporción de núcleos es tal que sigue fielmente la abundancia atómica que se puede encontrar en nuestro Sistema Solar, lo que apunta a que el origen de estas partículas es estelar. Existen algunas excepciones, por ejemplo, Litio, Berilio y Boro son núcleos que podemos encontrar entre los rayos cósmicos en una proporción mayor de lo que se encuentra en nuestro entorno. Estos núcleos en realidad se producen por la fragmentación de otros más pesados, Carbono en este caso, a lo largo de su viaje por el espacio. Así pues, la relación de abundancias entre Carbono y Boro, nos da información sobre cuánto tiempo el Carbono ha estado viajando por el espacio. El espectro, o número de partículas por unidad de área y tiempo en función de la energía, también ha sido medido con gran detalle durante los últimos 30 años gracias a la labor de numerosos experimentos. Dicho espectro de rayos cósmicos es sorprendente tanto en su variación como en su rango de energía. El número de partículas, o flujo, cubre 32 órdenes de magnitud, así pues nos encontramos con que las partículas menos energéticas llegan a la Tierra con una frecuencia de una partícula por metro cuadrado cada segundo. Por otro lado, las de más alta energía llegan a un ritmo de una partícula por kilómetro cuadrado, ¡por año! De ahí que los físicos hayan tenido que desarrollar diversas técnicas experimentales para poder medir el espectro de los rayos cósmicos en su totalidad: desde auténticos detectores de partículas enviados al espacio, en satélites o acoplados a la estación espacial internacional, hasta experimentos desplegados en grandes superficie de la Tierra para detectar los rayos cósmicos más energéticos como el Observatorio Pierre Auger que cubre una extensión de unos 3000km2 en lo alto de la planicie de la Pampa Amarilla, en Malagüe, Argentina.

Pero lo que hace a los rayos cósmicos realmente fascinantes es la cantidad de energía que éstas partículas pueden alcanzar, muy superior a la que se puede conseguir hoy en día con el acelerador más potente construido por el ser humano, el gran colisionador de hadrones (en inglés Large Hadron Collider, LHC) en el Centro Europeo de Investigación Nuclear (CERN) en Ginebra. El LHC es un anillo subterráneo de 27km de longitud, situado en la frontera franco-suiza cerca de Ginebra, Suiza, que usa potentes imanes para acelerar protones al 99.99% de la velocidad de la luz. Pese a lo imponente de este experimento, si tuviéramos que acelerar partículas a las energías de los rayos cósmicos con la misma tecnología necesitaríamos un acelerador del tamaño de la órbita de Mercurio. La velocidad de los rayos cósmicos es tan alta que los efectos de la relatividad especial son realmente considerables. Por ejemplo, pese que el radio de nuestra Galaxia es de unos 100.000 años luz, por la contracción temporal de la relatividad especial los rayos cósmicos más energéticos experimentarían el viaje en tan solo 10 segundos. Cuando llegan a la Tierra los rayos cósmicos se encuentran con 10 kilómetros de atmósfera que, junto al campo magnético de la Tierra, afortunadamente actúan como un escudo y nos protegen de la radiación. Sin embargo, al chocar con los átomos de la atmósfera los rayos cósmicos desencadenan una lluvia de nuevas partículas. Esta lluvia se conoce como rayos cósmicos secundarios y en ellos podemos encontrar una gran fauna de nuevas partículas. Esta es la razón por la que durante muchos años, la física de los rayos cósmicos era el único modo que tenían los físicos de partículas para descubrir y estudiar nuevas partículas. Así pues, siguiendo los pasos de Hess, durante los años 1940 muchos físicos pasaron del laboratorio a globos aerostáticos donde equipados de cámaras de burbujas (una primitiva versión de un detector de partículas) estudiaban esa miríada de nuevas partículas. Entre las nuevas partículas se descubrieron por ejemplo la primera partícula de anti-materia: el positrón, un electrón de carga eléctrica positiva, así como el muon, de propiedades similares al electrón pero de mayor masa.

Pero ¿de dónde vienen los rayos cósmicos? ¿Qué fuente del Universo es capaz de acelerar partículas a tales energías? Esa es la pregunta que, pese a los 100 años desde el descubrimiento de Victor Hess, los físicos aún no hemos sido capaces de resolver por completo. La razón es, sin embargo, fácil de entender. Los rayos cósmicos, al ser partículas con carga eléctrica, son desviados por campos magnéticos durante su viaje por el Universo. Tanto la Vía Láctea como el espacio intergaláctico están inmersos en campo magnéticos, de modo que cuando los rayos cósmicos llegan a la Tierra, su dirección poco o nada tiene que ver con la dirección original lo que imposibilita hacer astronomía. Sin embargo pese a todo, podemos deducir algunas cosas sobre su origen basándonos, por ejemplo, en su energía. Sabemos que los rayos cósmicos de baja energía deben provenir de nuestra propia Galaxia debido a que los campos magnéticos de la Vía Láctea se ocuparían de confinarlos hasta que éstos acabarían interaccionando con la Tierra. En el otro extremo del espectro, en cambio, los rayos cósmicos de energía extremadamente alta (o UHECR por sus siglas en inglés), deben provenir de fuera de nuestra propia Galaxia, puesto que son tan energéticos que los campos magnéticos de sus respectivas galaxias no serían capaces de retenerlos. El punto de inflexión entre esos dos orígenes es incierto, o en otras palabras, se desconoce cuándo exactamente los rayos cósmicos dejan de ser galácticos y pasan a ser extra-galácticos.  Sin embargo futuras medidas de precisión del espectro de energía y de la composición de los UHECR nos podrán dar la pista para resolver esa pregunta.

¿Y cuáles serían las fuentes o los objetos encargados de acelerar estas partículas? Lo cierto es que aquí todo son hipótesis dado que jamás se ha observado directamente una fuente de rayos cósmicos. Uno de los objetos candidatos a fuente de rayos cósmicos galácticos son los remanentes de supernova. Al final del ciclo de vida de una estrella ésta puede explorar liberando gran cantidad de masa y energía. Lo que queda detrás puede ser una estrella de neutrones rodeada de todos los restos que han quedado de la estrella original, esto es lo que se llama remanente de supernova (o SNR, otra vez por sus siglas en inglés). Más difícil es imaginar un acelerador cósmico capaz de acelerar partículas hasta la energía equivalente a un balón de fútbol chutado a 50km/h, que son las energías de los UHECR.  Aquí la lista de sospechosos se reduce considerablemente dado que existen pocos objetos en el Universo con el campo magnético y el tamaño suficiente para actuar como un gran acelerador de partículas. Los candidatos son los núcleos de galaxia activos y las explosiones de rayos gamma. Los núcleos activos de galaxias son núcleos de galaxias con un agujero negro supermasivo en su interior. Estos núcleos muestran unos haces de partículas en dirección opuesta que podrían funcionar como grandes aceleradores.  Por otro lado las explosiones de rayos gamma son los sucesos más violentos conocidos en el Universo y su origen y naturaleza daría para otro capítulo de este libro. De una duración que va desde unos segundos hasta unos minutos, estos eventos son capaces de iluminar todo el cielo liberando su energía principalmente en forma de fotones de muy alta energía.

Pero si los rayos cósmicos nunca apuntan a su fuente, ¿cómo podremos estar jamás seguros de que los núcleos activos o explosiones de rayos gamma son las verdaderas fuentes de rayos cósmicos? Para dar respuesta a este enigma necesitamos de lo que en los últimos años se ha venido llamando la astronomía multi-mensajero. Gracias a la física de partículas sabemos que en las condiciones en las que un protón, por ejemplo, es acelerado a altas energías, se pueden suceder reacciones con la materia de alrededor. Estás interacciones producirían otras partículas como fotones de muy alta energía y neutrinos. Los neutrinos son especialmente interesantes, porque no solo son neutros y por lo tanto viajan en línea recta sin ser desviados por campos magnéticos, sino que son partículas que interactúan débilmente por lo que, al contrario de los fotones, son capaces de atravesar zonas densas del Universo sin ser absorbidos. Identificar varios neutrinos provenientes de una misma zona del cielo sería la prueba inequívoca de que en esa dirección existe una fuente de rayos cósmicos. La dificultad de hacer astronomía de neutrinos deriva precisamente de su virtud: al ser partículas extremadamente elusivas se necesitan detectores de gran tamaño para poder detectarlas.

Hoy en día, el detector de neutrinos más grande del mundo se encuentra en el Polo Sur y consiste en un kilómetro cúbico de hielo Antártico equipado con unos 5.160 fotomultiplicadores. El telescopio IceCube, un nombre que describe muy bien su morfología, es capaz de detectar neutrinos en un gran rango de energías y por tanto identificar neutrinos de varios orígenes. En el año 2013, la colaboración anunció las primeras detecciones de neutrinos de alta energía, compatibles con un origen astrofísico. Sin embargo con apenas un puñado de esos neutrinos aún no es posible identificar las fuentes de rayos cósmicos. Es por ello, que la colaboración ya está pensando en agrandar el telescopio un orden de magnitud. Este nuevo ambicioso proyecto llamado IceCube-Gen2, podrá detectar fuentes 5 veces más débiles que su predecesor y resolver por fin el misterio del origen de los rayos cósmicos.



Juan Antonio Aguilar Sánchez
Doctor en Ciencias Físicas.
Investigador, iihe – Université Libre de Bruxelles.